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ABSTRACT

• o aso, r-
pumped modulated laser with which technical assessment of an optimum system

could be made. The ultimate goal is the transmission of real time television data

over ranges of 50 million miles.

Results of this program indicate that the capability of a solar-pumped modulated

laser to generate high power coherent radiation at optical wavelengths and its in-

herent advantages of small size and weight recommend it for spacecraft application.

Experimental apparatus used in testing solar-pumped modulated lasers, experimen-

tal results of successful transmission of real time television pictures, and tradeoffs

for space communication systems are given. It is shown that for the desired infor-

mation bandwidths, a communication range of 50 million miles requires narrow

beamwidths, necessitating extensions in the state Of the art in beam collimation

and tracking. __
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Section I

INTRODUCTION

For communications purposes, the electromagnetic wave spectrum may be

divided into two broad regions with a vague boundary in the vicinity of 1 THz.

In terms of wavelength, this boundary corresponds to a few tenths of a millimeter

and is thought of as lying between the ultramicrowave and infrared regions. The

so-called "radio frequencies" below this boundary can be generated by conventional

electronic techniques, as high-efficiency, high-intensity, coherent electromag-

netic waves. But the generation of high-intensity, coherent waves above 1 THz

has, until recently, been limited by an inability to manufacture electronic cavity

resonators with dimensions compatible with the short wavelengths involved. The

solution to this problem has been achieved through the generation of high frequen-

cies by natural atomic resonances, the outstanding example of which is the laser --

available at this time in several forms: gas, crystal, and semiconductor diode.

Thus, possibilities now exist for communication at frequencies above 1 THz.

With its ability to generate both coherent and high-intensity radiation at opti-

cal wavelengths, the laser provides good reasons for using an optical carrier wave

instead of a conventional radio wave for certain applications. For example, more

communication channels are possible at optical frequencies, and the wider channel

bandwidths available allow wideband modulation methods to be easily employed.

Also, the inherent narrow beamwidth of the emitted laser radiation makes longer

ranges possible with less power than required by conventional systems. This is

especially true for communication from vehicles exploring deep space. Of course,

this narrow laser beamwidth, which establishes the longer range property, also

places severe tracking requirements on the system. Be that as it may, the



properties of the laser suit it well for useas a communication device for manned

deep-space missions.

The implementation of an optical communication system requires the solution

of new problems. Somedesign procedures may follow closely those of a radio

communication system; others may diverge radically. Modulation and detection

techniques must be investigated along with sources of noise and properties of

the transmission medium. The characteristics of laser materials must be under-

stood, and these materials must be continually studied and improved. New devices

must be created to modulate and detect the optical carrier.

The approachto this investigation depends, of course, uponthe operational

requirements of the ultimate system desired. At present, and for the next decade

at least, the minimum communication requirements for manneddeep-space

missions are: a video channel of 5-MHz bandwidth (the equivalent of one commer-

cial quality television channel), a voice channel of 4-kHz bandwidth, a telemetry

channel of 1-kHz bandwidth, and a mean transmission distance of 50million miles.

The many aspects of the analysis to follow below are concerned with developing a

solar-pumped laser communication system to fulfill these requirements. The

analysis begins with the definition of system parameters and a conceptual space-

craft design for the system. Relationships amongthese parameters are studied

and correlated with results obtainedthrough experimentation with a laboratory

model of a solar-pumped laser. In addition, a technical assessment is made of the

capabilities of an optimum system of this type to meet the stated minimum require-

ments for manneddeep-spacemissions.



ANALYSIS OF

Section II

SYSTEM PERFORMANCE

A. MAJOR SYSTEM COMI_)NENTS

The major components of a solar-pumped laser communication system are

shown in Fig. 1. The laser crystal is mounted at the focal point of a parabolic

dish (solar energy collector). In operation, the collector is automatically pointed

at the Sun, thus solar-pumping the laser. The laser beam is then suitably modu-

lated, focused into a narrower beam, and transmitted. A parabolic dish at the

receiving station focuses the received energy on a photodetector, the output of

which is amplified and demodulated.

The design of each of the components making up the system of Fig. 1 must

take into consideration the requirements of the system as a whole. Also, because

several of these components are extensions of the state of the art, they will force

limitations on the performance of the system. Thus, overall design will, of ne-

cessity, be based on a consideration of tradeoffs among the many parameters in-

volved. For example, design of the system optics involves the establishment of

tradeoffs among collected solar power, collector dish diameter, circle of con-

fusion, laser output power, laser crystal size, tracking accuracy, type of pump-

ing (end or side), and so on. Selection of the laser crystal involves consideration

of absorption and radiation spectra, pumping threshold, spatial and temporal dis-

tribution of laser output, energy levels and efficiency, and thermal properties.

Design of the receiver must be based on good noise qualities, sufficient photo-

detector responsivity at the wavelength of the laser selected, antenna gain, and

detector temperature. Modulation and demodulation methods appropriate for the

bandwidth required and the power available must be considered carefully. Devices

for accomplishing the type modulation desired must be created and optimized.

3
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Fig. 1. Major components of a solar-pumped laser communication system.

All of these problems are interrelated in many ways; it is the object of this

report to first clarify what the problems are and second, to provide sensible and

practical solutions. The first step toward this end is a discussion of the many

parameters involved and the generation of tradeoff curves among these para-

meters. From a study of these curves in relation to the minimum communication

reqnirements set forth in See. I above, a possible system will be developed.

IL SYSTEM PARAMETERS AND SYSTEM PERFORMANCE

The maximum range which can be achieved with a given laser transmitter

power (or, conversely, the transmitter power needed for a given communication

range} depends upon the beamwidth of the transmitter, the type of modulation used,

the area of the receiver dish, and the sensitivity of the receiver. In addition, the

properties of the transmission medium and, since we are communicating with light,



background noise caused by reflected sunlight (if any) must be considered. The

following analysis provides definitions of these variables and develops mathemati-

cal relationships among them. The end result is a system of tradeoff curves from

which solar-pumped laser communication systems can be designed. Using these

curves, optimum systems for the years 1966 and 1970 are presented.

As shown in Appendices A, B, and C, respectively, the relationships among

signal-to-noise power ratio, required transmitter power, received signal power,

background noise power, and range through the Earth's atmosphere and through

space (or both) can be expressed in the form of the following three equations

(corresponding to Eqs. A-14, B-4, and C-3):

S

N

p2PsG2R £

2eB (PPs + PPb + Id)G2R£ + FkTB

_t2R 2 y _t2R 2

Pt = 2 p - Ps 4TTA s
TTD a o r

a o r

(1)

(.2)

lab = T Ta o 4

2
(X

MBopt Ar r
(3)

where

S/N

P
t

P
S

Pb

G

P

= signal-to-noise power ratio

= required transmitter power (W)

= received signal power (W)

= received background power (W)

= gain of post-photodetector amplifier

= responsivity of photodetector (A/W)
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R

e

B

F

k

T

Id

_t

r

R

D
r

A
r

T
o

T
a

M

B
opt

= load resistance (_)

-19
= charge on an electron (1.6 x 10 C)

= bandwidth of pre-demodnlation filter (Hz)

= noise factor of post-photodetector amplifier

-23
= Boltzmann's constant (1.38 x 10 J/°K)

= receiver front-end temperature (°K)

= photodetector dark current (A)

= transmitter beamwidth (rad)

= receiver beamwidth (rad)

= range (m)

= diameter of receiver collecting optics (m)

= area of receiver collecting optics (m 2)

= transmission of receiver optics

= transmission of atmosphere

= solar irradiance (W/m2/A)

o

= bandwidth of receiver optical filter (A)

= reflectivity of background

As described in subsequent sections of this report, the YAG laser is the best

CW crystal laser available for solar-pumped use at the present state of the art

for several reasons: it is easy to handle, it operates at elevated temperatures,

its emitted radiation has a wavelength which can be detected with a good photo-

detector, and its output can be wideband modulated with an available electro-optic

crystal.

6



The wavelengthof the radiation emitted by the YAG laser is 1.06 /_m. As

shown in Fig. A-l, the S-1 photosensitive surface (the best available at this

wavelength} responds to this wavelength with a responsivity of 0.3 x 10 -3 A/W.

A good photodetector with an S-1 surface is the RCA 7102 multiplier phototube.

The salient feature of this tube is the high, essentially noise-free gain of its

electron multiplier. This gain is high enough (for the application at hand} to make

amplifier noise N (see Eq. A-12) negligible compared to the amplified shot noise
a

N (see Eq. A-10) from the photocathode.
S

detector, Eq. 1 becomes

Thus, with the multiplier phototube

2 2
p P

S s (4)

_ 2eB (PPs + PPb + Id)

This is an important equation, for it tells us what the received signal power

must be for a given signal-to-noise ratio. In particular, Eq. 4 allows us to calcu-

late the lowest received signal power tolerable for acceptable reception of the

transmitted information. This minimum acceptable received signal power is de-

pendent on the lowest signal-to-noise ratio at which the receiver will function.

According to the analysis given in Appendix D, this receiver "threshold detection

level" is 9 dB, i.e., a signal-to-noise ratio of approximately 10:1. Substituting

this value of S/N into Eq. 4, we get the following quadratic equation on relating

P *, the received signal power at threshold, to the system parameters:
S

= 0 (5)

With Eqs. 2, 3, and 5 we can now analyze the performance of an optical com-

munication system employing a multiplier phototube receiver. The question at

this point is: What should be the numerical values of the parameters in such a

system? Or, better yet: What can these parameter values be in light of re-

strictions placed on the system by the state of the art? In other words: Just

what is the optimum system we can produce?



We will attempt to answer these questionsby considering three possible sys-

tems:

(1} An experimental system which is designedto make efficient use of readily
available components. (Theparameter values for this system do not
represent the best that can be realized at the present state of the art,
but simply what can be realized with a readily-built laboratory model of
the system. Increasing the diameter of the receiving dish, cooling the
photodetector, andreducing channel bandwidth, amongother things,
would result in extendedcommunication range with this system. ) Al-

though this experimental system does not represent an optimum design,

it serves as a model for providing experimental verification of theory.

As such it is worthwhile to predict the communication range it can

realize. Experimental verification of the theoretical predictions will

provide the basis for assessing the capabilities of an optimum system.

(2) An optimum system which is designed to make efficient use of state-of-

the-art components for the year 1966.

(3) An optimum system which is designed to make efficient use of state-of-

the-art components for the year 1970.

In addition to considering the analysis of the optical communication problem

from the point of view of these three systems, we must also consider the possible

environments for these three systems. Since the laboratory system will be

Earth-bound, its performance will be based on both its transmitter and receiver

existing in Earth's atmosphere at sea level. The optimum system of 1966 has

one end of the transmission link on Earth and the other in space. The perform-

ance of the optimum system of 1970 will be considered from two points of view-

(1) one end of the transmission link on Earth and the other in space, and (2) both

ends of the communication link in space.

The effect of Earth's atmosphere on system performance is accounted for by

the atmospheric transmission factor T in Eqs. 2 and 3. Values of this factor
a

are dependent on meteorological conditions and the height above Earth's surface

at which the receiver and/or transmitter is located. A thorough discussion of T a

is given in Appendix E where it is shown that on a clear day, T _ 80 per cent
a



for a range from sea level to outer space. Even more significant than this is that

the value of T for one end of the communication link located at a height of 1.5a

miles (_ 8,000 ft or 2.4 km) and the other end in space is approximately 96 per

cent. This means that if one end of the range is located at a high cloudless ele-

vation, atmospheric attenuation of the communication beam is negligible. Of

course, T = 100 per cent if both ends of the communication link are located in
a

space.

We now have enough information to specify some values for the system para-

meters which appear in Eqs. 1, 2, and 3. A summary of these values is given in

Table I for the several systems postulated above. Note in Table I that the several

systems are identified as System 1, System 2, System 3 and System 3'. The fol-

lowing analysis will describe the performance of these systems in detail.

SYSTEM 1

In this system, both the transmitter and receiver are located in Earth's atmos-

phere. This fact should be kept in mind at all times when viewing the results of

this analysis, for the Earth-Space and Space-Space systems (which illustrate the

ultimate application} will differ significantly from the Earth-Earth system.

-9
Substituting the System i parameter values into Eq. 3 yields Pb = 7.1 x 10 T .a

Assuming T = 1 (a worst-case condition as far as background noise is concerned),a

Pb = 7.1 nW. Compared to Id/P, this value of Pb ean be neglected in Eq. 5, since
-7

Id/P = 3.3 x 10 W for System 1. Thus, for System 1, Eq. 5 yields a received
-7

signal threshold power of P * = 1.81 x 10 W. With this value of P , Eq. 2 be-
s S

comes

-ii R 2

Pt = 4.5 x 10 -- (6)T
a

9



Table I. SYSTEMPARAMETERSAND SPECIFICATIONS

Parameter

Collector

Mirror

Diameter D c

Pump
Power

Collected

Laser

Efficiency

Laser

Output Power

Pt

System 1 System 2 System 3

Present

Experimental

System
Earth-To-Earth

1.06 Dm

31 in (= 0. 787m)

300 W

O. 1%

300 mW

12 in (= 0. 305m)

Optimum

System

1966

E arth-To-Space

At Mars

1.06/Jm

31 in (= 0. 787m)

100 W

1%

0.5-1W

30 in (= 0.762 m)

Optimum

System

1970

E arth-To-Space

At Mars

1.06 /_m

45 in (= 1.143 m)

200 W

5%

5-10W

D
r

2 2 2
A 0.073 m 0. 456 m 1.81 m

r

B 6 MHz 6 MHz 6 MHz

p 3x10-4 A/w axl0 -4 A/W Sxl0-1 A/W

M 0.1 W/m2/A 0. i W/m2/A 0. I W/m2/_k

Depends on

Transmission

Range (see

Figs. E -1, 2)

T
a 0.9

T 0.4 0.4
O

Bop t 100 A 100

S/N 10 10

3 mrad 100 /_ lad

60 in (= 1.52 m)

0,9

0.4

100

10

10 /_rad

1 mrad 1 mrad I0/_rad
r

Id 10 -10 A 10 -12 A 10 -12 A

k 1.38x10 -23 J/_K 1.38x10 -23 J/°K 1.38x10 -23 J/°K

T 300 _K

0.1

300_K

0.1

300°K

0.1

System 3 e

Optimum

System

1970

Space-To-Space

1.06 .m

45 in (= 1.143 m)

200 W

5%

5-10 W

60 in (= 1.52 m)

2
1.81m

6 MHz

3x10 -1 A/W

NA

1.0

0.4

I00

10

10 /Jrad

10 /Jrad

10-12 A

I.38xi0 -23 J/_K

300°K

NA

10



for System 1. According to the atmospheric transmission values T given by
a

Fig. E-2, transmitter power and transmission range, as given by Eq. 6, are

related as shown in Fig. 2 for several meteorological conditions (i. e., very

clear, clear, and hazy atmosphere). From this information it is evident that a

transmission range of 10 miles can be achieved on a clear day with the laser

output power of 300 mW specified for System 1. On a very clear day, the

transmission range is extended to about 17.5 miles for the same laser output

power.

System 2

In this system, one of the terminals of the transmission link is located in

space and the other on Earth at a high altitude. Other differences from System 1

include the magnitude of the power output (0.5 to 1 W compared to 300 mW), the

diameter of the receiving dish (30 inches instead of 12 inches), the beamwidth

(100 Drad compared to 3 mrad), and the receiver dark current magnitude which

is made two orders of magnitude smaller by cooling the multiplier phototube.

-8
Substituting the System 2 parameters into Eq. 3 yields Pb = 4.1 x 10 W.

Substituting this value of Pb into Eq. 5 yields received signal threshold powers
-8 -9

P * of 9.4 x 10 W and 1.6 x 10 W for information bandwidths B of 6 MHz and
s

5 kHz, respectively. With these values of P for System 2, Eq. 2 becomes
$

Pt = 4.4 x 10 -7 at2R 2, B = 6 MHz

Pt = 5.5 x 10 -9 at2R 2, B = 5 kHz

Required transmitter power and transmission range, as given by Eqs. 7 and 8,

are related as shown in Figs. 3 and 4 for several values of a t. Note from Fig.

that the specified values of a t and Pt for System 2 (i. e., a t = 100 _rad and

Pt = 1 W from Table I) permit a transmission range of 10,000 miles.

(7)

(8)

11



SYSTEM 3

System 3 differs from System 2 in that laser power output is greater (5-10 W

compared to 0.5-1 W), the receiver dish diameter is greater (60 inches instead of

30 inches), the responsivity is greater (0.3 A/W compared to 3 x 10 -4 A/W), and

the transmitter and receiver beamwidths are narrower (10 /_rad compared to 100

_zrad, and 10 Drad compared to 1 mrad, respectively). The location of the termi-

nals is the same as in System 2: one in space and one on Earth at a high altitude.

The significant increase in responsivity predicted for System 3 in 1970 is

based on rapidly developing improvements in the performance of photoconductive

devices. Recent studies 1 have indicated that although the photomultiplier (in its

appropriate spectral region) is the most sensitive device for low modulation fre-

quencies (its very high current gain more than offsetting the signal loss from a

somewhat inferior quantum efficiency), in the megahertz region, the photocon-

ductor can have sufficient gain to outperform the photomultiplier° In particular,

for the case of wavelengths in the region of 1.06 _m, photomultiplier surfaces are

very low in sensitivity (e. g., the best surface presently available at 1.06 _zm yields
-4

a responsivity of only 3 x 10 A/W). Thus, with the rapid advances being made in

the development of the photoconductive optical detector, it is entirely conceivable

that a high-gain, low-noise, good-responsivity device will be available for practical

use in 1970.

As listed in Table I above, a reasonable value for the responsivity of a prac-

tical photoconductive device is 0.3 A/W. This value, along with present-day values

of gain and noise equivalent power equal to 100 and 10 -15 W, respectively, again

allows the receiver to be considered as shot noise limited -- just as in the case of

the photomultiplier receiver.

still valid.

1
H. S. Sommers, Jr. and E.

Detector,

1965.

Therefore, the approximation of Eq. 1 to Eq. 4 is

tL Gatchell, "Sensitive Broad-Band Photoconductive

" 1965 Annual Meeting of the Optical Society of America, 5-8 October

12



-11
Thus, substituting the System 3parameters into Eq. 3 yields Pb = 1.63 x 10

W. Substituting this value of Pb into Eq. 5 yields received signal threshold powers

P *of8 x 10 -11 W, 5.8 x 10 -11 W, and 1.1 x 10 -12 W for information bandwidths
s

B of 6 MHz, 4 MHz, and 5 kHz, respectively. With these values of Ps* for Sys-

tem 3, Eq. 2 becomes

Pt 9.6 x 10-11 _t2R 2= , B = 6 MHz (9)

Pt 6.9 x 10-11 _t2R 2= , B = 4MHz (10)

Pt 1.3 x 10-12 _t2R 2= , B = 5kHz (ii)

SYSTEM 3'

System 3' differs from System 3 in only two respects. Since operation is en-

tirely in space, background radiation is negligible and atmospheric attenuation

does not exist. Therefore, Pb = 0 and T = 1 for System 3'. Thus, substitutinga

the System 3' parameters into Eq. 5 yields P * = 6_ 7 x 10 -11 W, 4.6 x 10 -11 W,
s

and 4. 5 x 10 -13 W for bandwidths of 6 MHz, 4 MHz, and 5 kHz, respectively.

With these values of P * for System 3', Eq. 2 becomes
S

Pt = 7.3x 10-11 (_t2R 2, B = 6MHz (12)

-11 '2. '2.

Pt = 4.9x 10 _ st-R-, B = 4MHz (i3)

5. 9 x 10 -13 _t2R 2Pt = , B = 5kHz (14)

Required transmitter power and transmission range, as given by Eqs. 12, 13, and

14, are related as shown in Figs. 5, 6, and 7, respectively, for several values of

(_t' the transmitter beamwidth.

13
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Note that Eqs. 9, 10, and 11 are approximately equal, respectively, to Eqs.

12, 13, and 14. Thus, there is very little difference in performance between

Systems 3 and 3', and Figs. 5, 6, and 7 apply to both.

Note from Fig. 5 that the specified values of s t and Pt for System 3' (i. e.,

s t = 10 Drad and Pt _ 15 W from Table I) permit a transmission range of 24

million miles. For a 50-million-mile range at Pt = 10 W, a beamwidth somewhat

less than i0 Drad (say, about 9 Drad) is required. Of course, if the information

bandwidth B is only 5 kHz (a real-time voice channel}, then from Fig. 7, a range

of 80 million miles can be achieved with a power output of 1 W at a beamwidth

of 10 Drad, or 24 million miles with a power output of 10 W and a beamwidth of

100 _rad. Note also from Fig. 7 that a range of 70,000 miles can be achieved

with a relatively large beamwidth of 10 mrad at 1 W.

From the range-power output data compiled above for Systems 3 (Earth to

Space) and 3' (Space to Space), it is evident that (1) there is not much difference

between the two systems, and (2) a transmitter beamwidth of 10 Drad (or less)

is necessary to achieve a communication range of 50 million miles at the pre-

dicted laser power outputs available in 1970. To satisfy these requirements, a

configuration such as that illustrated in Fig. 8 can be implemented. In this sys-

tem, the laser receiver is slaved to a powerful laser beacon positioned at a high
1

altitude on Earth's surface or on board an Earth-orbiting satellite. In operation,

the beacon monitor on the spacecraft tracks the beacon and directs the narrow-

beamwidth, wide-bandwidth laser communication signal toward the laser receiver.

In effect, this is an open-loop control system. Implementation of this system in-

volves the careful consideration of factors such as Earth rotation (the beacon must

not be lost behind Earth at any time) and translation, signal transmission time

If the beacon is on board an Earth-orbiting satellite, the orbit of the satellite

can be fixed to avoid occultation by Earth at any time during an Earth-Mars

mission.
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(_ 530 seconds two-way transmission time between Earth and Mars}, and maneu-

vering capabilities of the spacecraft (i. e., how quickly the spacecraft can change

course}. A suggested system (in which the beacon is located on Earth's surface} 1

which employs compensation for these factors is shown schematically in Fig. 9.

In this system, communication between Earth station (actual ground base or

satellite} and spacecraft is initiated before launch or at some time early in the

mission, and is maintained continuously throughout the mission in the following

manner: Observe in Fig. 9 that the first signal is received at Earth station at

time "t". This time is arbitrary and may be chosen to be the time of initiation of

the continuous communication process.

This signal will be assumed to be of duration t and to contain information
ml

which will allow the determination of the spacecraft course for a time At, where

At is a function of the information processing time, signal transmission time,

and the time required to perform any necessary mechanical positioning of Earth

(or satellite) and spacecraft antennas. ( At will assume its maximum value when

the spacecraft is at its maximum distance from the Earth. station. ) The received

signal is "sent to the Earth computer where:

(1) The future course of the spacecraft is plotted.

(2) Aiming information for the Earth beacon and receiver is generated.

(3) Aiming information for the spacecraft transmitter and receiver is gen-
erated.

The time required to perform these functions will be denoted as the information

processing time t for the Earth computer. After the functions have been performed,
P

the Earth beacon and receiver are aimed to a point on the projected course of the

spacecraft, this point being that at a time given by t + t + t + t , where t is
ml p a a

the time required to maneuver the Earth beacon and receiver. After this time,

A similar system applies if the beacon is carried on board an Earth-orbiting
satellite.
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the beacon and receiver follow the course plotted by the Earth computer. When

the beacon is aligned to follow the projected spacecraft course, information for

aiming the spacecraft transmitter at Earth is sent to the spacecraft. This in-

formation is received there at a time t + tml + tp + ta + t02' with:

where

C

= the distance between the Earth station and the spacecraft.

(It is seen that t02 will be a function of message duration

if the spacecraft is moving. The Earth computer must be

capable of taking this into account. If initial contact is

assumed made before launch, t02 is constant. )

= the velocity of light

The duration of this message is tm2, where tm2 is sufficient time to allow

the spacecraft receiver to be locked onto the Earth beacon. After this initial re-

ception, the spacecraft transmitter and receiver are aimed (using the informa-

tion received during the first spacecraft reception) to track the Earth station.

Spacecraft transmitter and receiver aiming can be controlled by a relatively

simple computer carried on board the spacecraft. When this aiming is complete,

the spacecraft can again transmit to the Earth station, and is ready to receive

continuous transmission from Earth. After the procedure above has been com-

pleted, as long as the spacecraft can supply position information continuously to

Earth, the Earth computer can continuously update the plotted course of the space-

craft so that the alignment at each end of the communication link can be continually

adjusted as the spacecraft follows its course. The realignment necessary is ac-

complished by repeating the procedure used for initial alignment with the except-

ion that the receiver need no longer be required to lock on the beacon beam.
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Due to the fact that the course information is in fact delayed during its trans-

mission, the question arises as to how this affects the alignment of the communi-

cation link. Consider, for example, the case of communication to any point I_Ep

away where signal transmission time (two way) is approximately tO seconds.

Let the other delays (processing time, message duration, aiming times) be

denoted by t'. After the spacecraft transmits position information, it must wait

at least t O + t' seconds for instructions to readjust its communication system

alignment. It becomes reasonable to ask whether the spacecraft can, in t O + t T

seconds, move in such a way that its receiver will no longer intercept the beacon

beam or that its transmitter will no longer be pointed at the Earth station. It is

clear that only movements in a direction normal to rEp are of interest in this

connection, and, in fact, only relatively ,,sudden,' movements which are the ef-

fects of "sudden" accelerations. For such a movement to cause a loss in com-

munications, it is necessary that the spacecraft transmitter move an angle equal

to one-half its beamwidth or for the Earth beacon to move one-half its beamwidth.

Such a movement as the former may cause temporary loss of communication,

since the Earth computer is still able to track the spacecraft for some time after

the link is broken. A movement of the latter type will probably cause permanent

loss of communication, since the Earth computer will now direct the beacon on a

course which the spacecraft no longer follows. The uniform 1 acceleration of a

+ t' required to cause loss of communication is givenspacecraft during a time t o

by:

where

2x

a _- '

(t o +t' )2

(16)

2x = the diameter of the beam of the transmitter considered (miles)

t O + t'= the total two-way transmission time (seconds)

Uniform accelerations are considered since they represent minimum accelera-

tions required to move a given distance in a given time.
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This acceleration may be interpreted as a limit to the uniform spacecraft

acceleration which may be applied for a time < (t o + t'). The spacecraft trans-

mitter beam diameter is given by ol I_'_ I where c_ is the beam divergence.
-6 IEP I

For o_ = 10 tad, the permitted maximum uniform acceleration for the space-

craft a is given by:
S

a
s

x10.6
= mi/s 2

(t O + t') 2

(17)

For loss of the Earth beacon the corresponding spacecraft acceleration is (beam-

width of Earth beacon assumed = 10 -5 rad)

x
= mi/s 2

% 2
(t o + t')

(18)

It is known that t o =2 I_Ep] /c. In terms of this time, the equations above can
I !

be written:

i %ixl0
a = mi/s2 ab max =

smax _2 P +t 2 2_Ep +t
C

(19)

It is observed that the permitted acceleration increases with range until

.--,Ir_Pl = (1/2) ct' where it reaches a maximum, and then begins to decrease. Fig.

10 shows the maximum permitted uniform accelerations (such that there is no

L-'Ipermanent loss of communications) of the spacecraft during a time t o + t' vs rEp

I -7 I Also, based on the beamwidths assumed above, it isfor large values of. rEp..

noted that a "temporary loss" of communication could result if an acceleration one-

tenth that required for "permanent loss" occurred. As an example, consider com-

I-'1 _ 50x 106mi. Assume
munications between Earth and near Mars where rEp

21-" I mi/s 2( rEp /c) = 528 s and t' = 5s. Then, an acceleration of 0. 00173 for _ 530
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secondswill result in permanent loss of communication. This acceleration cor-

responds to approximately 0. 285 g, a condition which will probably never exist

due to the tremendous amount of energy required to cause it (for the time involved).

In this case a (acceleration permitted so communication is never lost) _ 0. 0285 g,
s

a condition still not likely to obtain. This indicates that the communication link

can be very reliable at large distances. However, consider the case of operation

at small values of 17EPI, for example, 10,000 miles. Here (2 I_'EPI /c)_ 0. ls.
w I

If the time t' is of the order of 5 seconds, the values of the "loss accelera-

tions" are

a
s

(104) x 10 -5

25

(104) x 16 -6

25

mi/s 2 = 0.004 mi/s 2

mi/s 2 = 0.004 mi/s 2

(20)

These correspond to a b _ 0.66 g and as 0.066 g, respectively.. It is reasonable

to expect that accelerations of this magnitude could be applied during the 5-second

total communication time at 10,000 miles. This implies that in this region of

range, communication requirements must limit the maneuvering of the space-

craft. At distances less than about 5000 miles, the graph of Fig. 10 does not

yield accurate values for the permitted acceleration in the 5-second communica-

tion time. In that region the beam diameters approach the diameter of the re-

ceiver antennas (_ 4 ft) or become much smaller and the antennas can no longer

be considered as points. In this region an estimation may be made to find an

"equivalent uniform acceleration, " the counterpart of that defined above. It may

be assumed that when beam diameter < < antenna diameter, the allowed motion

in the 5-second interval is that required to move the beam a distance equal to the

radius of the antennas. For both antennas with a diameter of 4 feet the "equiva-

lent uniform accelerations" are:
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4 ft s2a - 2 = 0.16 ft/ = 0. 005 g (21)
25 s

In the intermediate range where beam diameter _ antenna diameter, the actual

permitted acceleration depends upon the amount of overlap between beam and

antenna. The allowable uniform accelerations in this range for t' = 5 seconds
-1

should be of order 10 g. It thus appears that maintaining contact at close

range can be expected to be more difficult than at great distances. The solution

to this problem can be obtained in several ways:

(1) Do not allow the spacecraft to maneuver at close range if early acquisi-
tion is used to initiate communications.

(2) Allow close maneuvers but perform acquisition at a great distance
(_ 106 mi).

(3) Provide a method of varying the transmitter beamwidths so that larger

values of _ can be obtained at close ranges.

It is desirable at this point to investigate the nature of a beacon which could

be used in an "open-loop" tracking system.

Assuming a 31-inch beacon monitor receiving mirror with a 3-milliradian

field of view (angle size chosen for tracking ease}, the Earth subtends an angle of

1/20 _ at 50 million miles. With this value of 1/20 a , Eq. 3 yields Pb = 9.3 xr r
-i0 2 o

10 W, where the parameters T =0.9, T =0.4, _ =0.1, M=0.1W/m /A,
a o

and B = 100 /_ have been used.
opt

Now, in order to calculate Pt we must first decide on the kind of laser to use

as the beacon. Certainly, in 1970 there will be a much wider choice than at

present. Therefore, what we will do here is give an example, using a good

present-day laser. Specifically, let us postulate the use of an argon laser,
O

which emits radiation at 5000 A. According to Fig. A-l, photosensitive sur-

faces at this wavelength have responsivities on the order of 0.07 A/W.
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Thus, with p = 0.07 A/W and a narrow information bandwidth of B = 10 Hz

(which is sufficient for tracking), Eq. 5 yields a value of minimum necessary
-11

received signal power (i. e. threshold signal power) of P * = 1.3 x 10 W.
' s

With this value of Ps' Eq. 2 becomes

Pt = 7.1 x 10 -13 c_t2R 2 (22)

which indicates that at a range of 50 million miles and a beacon beamwidth of 1

mrad the power output of the argon laser beacon would have to be O. 5 watt.
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Section III

COMPARISON OF POSSIBLE

DEEP-SPACE LASER PUMP POWER SOURCES

The suitability of a given type of pump power source for an optically pumped

laser on board a deep-space vehicle is determined by the amount of power to be

supplied as well as other practical considerations such as size and weight. For

the deep-space laser communication system postulated for the year 1970

(see Table I), a laser power output of 5 to 10 watts at 2 per cent efficiency is

predicted. A 10-watt laser with an operating efficiency of 2 per cent requires a

pump power of 500 watts.

Pump sources which can supply this amount of power in a deep-space en-

vironment are of two types: those external to the spacecraft and those carried

by it. The only external source capable of supplying 500 watts of pump power is

the Sun. An example of the second type is the high-intensity lamp which is, at

present (and in the near future), the only practical "artificial,' source capable of

supplying optical energy at a high power level. 1 Thus, lamp pumping will be con-

sidered as the alternative to solar pumping. A comparison between these two

sources will serve to illustrate the desirability and practicality of solar pumping.

A. HIGH-INTENSITY LAMP PUMPING

While it is true that different types of lasers require different types of pump

lamps, it is possible to consider some properties of lamp-pumped systems in general.

1The possibility of pumping the transmitting laser with another laser is not

considered practical here. The 500-watt output requirement precludes such

operation unless the pump laser is almost 100 per cent efficient. A 500-watt

100 per cent efficient laser is far beyond the present state of the art.
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One important property of these systems is that the laser crystal must be side

pumped, since intense sources needed for end pumping are not available. In

certain cases, side pumping can be considerably less efficient than end pumping

for a specific pump source. The power absorbed in a crystal is an exponential

function of the path length for the pump radiation. Clearly, for end pumping,

this absorption path length is at least equal to the length of the crystal. For

side pumping, the absorption path length varies depending on the angle of in-

cidence of pump light rays on the crystal. An average absorption path length

can be calculated easily. Thus, by Shell's law,

I I

nsin_=n sin_p

where

= angle of incidence of light upon crystal

I

_p = angle of refraction of light as it passes through crystal surface

n = index of refraction of medium outside crystal

I

n = index of refraction of crystal material

Now the absorption path length d inside the crystal is a function of cp' and the crystal

diameter D, viz.,

I

d = D cos ¢p

Solving for _p' from Snell's law and substituting in the relation for d yields,

[sin-1 ( n _P/]d = D cos --, sin
n

If it is assumed that the light inside the crystal is not reflected at the crystal

boundaries, the average absorption path length d is, therefore,

IT

J = _ D cos sin -1 , sin d ¢p

O
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?r

/o2 2D 1 - sin _ d

= 0.78834D

Thus, the average absorption path length for side pumping is 0.79 times the

crystal diameter. Therefore, if most of the pump power available is not ab-

sorbed in a distance 0.79 times the crystal diameter, end pumping can be a more

efficient process. If the opposite is true, the side pumping efficiency can approach

the end pumping efficiency as a limit. This will be the case when pump radiation

is confined to the absorption bands of an optically dense laser material. High-

pressure mercury-lamp pumping of YAG:Nd3+-Cr 3+ "is an example of this.

If a lamp-pumped laser operates with a 10-watt power output and an efficiency

of 2 per cent, a minimum of 500 watts of pump power is needed in the volume of

the crystal. Under the assumptions (1) that the lamp converts 80 per cent of the

electrical input power to light and (2) that it is pos'sible to couple 50 per cent of the

available light into the crystal, it follows that for side pumping a minimum electrical

power input of 1250 watts is required. Thus, this type of laser system requires that

a spacecraft carry at least a 1250-watt electrical power source.

The above laser system also requires a laser cooling supply with a minimum

cooling capacity such as to maintain a proper operating temperature for the laser

under conditions of 500 watts input power. Beyond this is the additional requirement

of a lamp cooling system.

Another important consideration in the use of lamp pumping is the limited life-

time of the lamp used, typically 30 to 70 hours of operation. This may, in fact,

preclude the use of lamp pumping on an unmanned space mission.
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B. SOLAR PUMPING

The use of the solar pump source eliminates the need of an electrical power

source from which pump power is obtained after energy conversion. Also, be-

cause of the brightness of the source, it is possible to end pump the laser crystal

and thereby make use of the most efficient pumping method for a given laser with

any pump source. The overall efficiency of solar pumping is therefore deter-

mined by the general absorption characteristics of the laser only (match between

solar emission spectrum and laser absorption spectrum). In this case then, for

a laser which operates at 2 per cent efficiency with a solar pump source, 500 watts

of pump power must be supplied to the crystal. This system also requires cooling

for maintaining a proper operating temperature with an input of 500 watts to the

crystal.

An additional requirement for solar pumping is a tracking system for aiming

the collector mirror at the Sun. This adds some complexity to the overall system

but, since the aiming system for the transmitter must be accurate to • 0.5 micro-

radian, whereas the solar tracker must be accurate to • 3 milliradians, its addition

does not impose serious limitations.

C. COMPARISON OF SOLAR AND LAMP PUMPING

An exact comparison of solar and lamp pumping can be made only for a given

laser crystal (known material, size, dopant concentration, etc. ). However, it is

possible to make a useful comparison between two 10-watt laser systems, both

two per cent efficient under conditions of either solar or lamp pumping. Such a

comparison for a space vehicle in the vicinity of Mars is shown in Table II. (The

estimated weight of the lamp-pumped laser power supply in this table was deter-

mined by entering Fig. G-3 with a converter electric power of 1250 watts. }

34



Table II. CHARACTERISTICS OF SOLAR AND LAMP PUMPED LASER SYSTEMS

Characteristic Lamp-Pumped Laser

Output Power 10 W

Laser Efficiency 0.02

Pump Power Required 500 W

Source of Power

Conversion Efficiency:

Source Power to Pump
Power

Total Input Power

Power Supply Weight

(Estimated)

Power Source Size

(Estimated)

Crystal Cooling

Capacity

Other Special

Properties and

Characteristics

Electrical (For example,

from Solar Cells)

0.4 (DC to Optical

Power}

1250 W

730 lb Plus Converter

Weight (Solar Cell

Source}

245 ft 2 (Area of Solar

Cell Array)

Sufficient for Stable

Temperature at 500 W

Input

Lamp Cooling Required.

Pumping Cavity

Required.

Limited Lamp Life.

Solar-Pumped Laser

10 W

O. 02

500 W

Solar Energy Collected by
Mirror

1.0 (Direct Pumping)

500 W

100 lb (Total including
Solar Collector and

Mount)

11 ft 2 (Collector Dish

Area)

Sufficient for Stable

Temperature at 500 W

Input

Mirror Aiming Required.
Laser Mount can

Incorporate Cooling.

From the chart it follows that when a given laser is pumped with equal

efficiency by solar or lamp pump sources, the choice between the two possible

pump sources must then be based on the desirability of using a relatively in-

efficient, heavy, power source and its associated system components to operate

a limited life lamp or a collector mirror with its tracker to pump the laser

directly. It is seen that, although both pump sources will operate the laser well,

the solar pump source has more advantages for a deep-space application.
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The comparison given in Table II does not remain strictly valid if the

efficiency of a given laser depends on the pump source used (which is usually

the case). If the lamp pumping is less efficient than solar pumping, the un-

desirable features of the lamp pump source (weight, size, inefficiency) are

emphasized more than in the equal efficiency comparison of Table II. If

lamp pumping is more efficient, the weight and size requirements of the two

systems become more comparable. If lamp pumping is seven times as ef-

ficient, these requirements become similar. Since this extremely high

relative efficiency has not been realized with lamps used to pump YAG lasers,

it is not yet possible to construct a lamp pump source which can match the

solar pump source with respect to weight and size.
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TECHNICAL

LASER

Section IV

DETAILS OF A SOLAR-PUMPED

COMMUNICATION SYSTEM

A. LASER CRYSTALS

At present, much effort is being devoted to the development of new laser

crystals and the improvement of existing laser materials. Several of these have

already been found suitable for use as generators of a CW carrier which can be

modulated with wideband information. In particular, CaF2:DY 2+ (calcium fluoride

doped with divalent dysprosium), YAG:Nd 3+ (yttrium aluminum garnet doped with

trivalent neodymium), and YAG.Nd3+-Cr 3+ {yttrium aluminum garnet doped with

trivalent neodymium and trivalent chromium) are most useful at the present state

of the art. The physical properties of these three crystals, their operating

characteristics, and their usefulness as CW energy sources are described below.

In addition, the optimization of crystal size for solar-pumped operation is dis-

cussed in a general way so as to apply to any crystal material used.

i. Physical Characteristics of Laser Crystals

a. Properties of CaF2:Dy2+I

O J- O_

In this crystal the Dy _" dopant ions are substituted for Ca _' ions of

the CaF 2 host lattice. The dysprosium enters the lattice in a trivalent state and

is reduced to a divalent state at the lattice sites by a process such as photore-

duetion or electrolytic reduction. In the former, electrons for the Dy 3+-_ Dy 2+

reduction are freed from fluorine atoms by the action of _, radiation. This process

1
J. P. Wittke et al., "Solid State Laser Explorations", Final Report, Contract

AFL-TR-64-334, January 1965. (General reference for CaF2:Dy2+ material. )
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3+

reduces about 20 per cent of the available Dy ions and is reversible under the

influence of high temperatures or a high level of optical radiation. Crystals pro-

duced by this method are therefore unstable over long periods of high pump level

3+
operation. In the electrolytic reduction process, electrons are supplied to Dy

and fluorine atoms are released from the crystal in gaseous form. Crystals pro-

duced by this method are stable and do not exhibit the "bleaching" effects described

above.

The process of absorption and consequent laser emission can be shown

by the energy level diagram in Fig. 11.

The presence of pump energy in the CaF 2:Dy 2+ crystal causes transi-

tions from the 4f to the 5d electronic energy levels of Dy 2+. The pump bands for

this crystal extend from 0.3 _zm to 1 _ m and thus lie in the visible and infrared

portions of the spectrum. Hence, an efficient pump source would be a blackbody
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Fig. 11. Energy levels of CaF2:Dy2+.
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at several thousanddegrees Kelvin. Both tungsten lamp (3400°K) and solar (6000°K)

pumping have been successfully used.

Laser emission accompanies a de-excitation transition between the

517 518 - 1triply degenerate and states, the latter being on the order of 30 cm above

the ground state. This emission occurs at temperatures below 77 ° K. At a temper-

ature of 70 ° K the energy of the terminal state is 0. 61 kT, indicating that the system

functions as a three-level laser. The fluorescent lifetime of the 5I 7 state is 3 ms
-1

and the fluorescent linewidth is about 0.3 cm This ensures that CW laser

operation can be achieved with moderate pump power levels. (The "long" lifetime

ensures that the pump source can excite atoms at the necessary rate, and the

narrow linewidth contributes to requiring a small value for the critical population

inversion. ) The narrowness of the linewidth also allows single mode operation.
-1

(The mode spacing is 0.15 cm for a laser 1 inch long. ) The narrowness is

important if a magnetic modulation technique is to be possible.

The wavelength of the laser emission is 2.36 _m. The temporal

characteristics of the output depend on the type of reflectors used at the crystal

ends. If flat-end crystals are used, the output consists of a series of 2-/_ s

pulses. The amplitudes of the pulses are relatively independent of pump power,

but the pulse frequency is strongly dependent on the pump power. Frequencies

range from a few thousand pulses per second at threshold to 105 p/s at high levels

(i. e., 1 kW into a pump lamp used in an elliptical cavity). For spherical-end

crystals, spikes are not observed. The output consists of a large CW component

with small ripple content (typically 10 to 30 per cent).

As described in Sec. V. B below, a CaF2:DY 2+ laser has been operated

under solar-pumped conditions. Inhomogeneous magnetic modulation was used to

transmit audio information, and operating characteristics were found to be well-

described by the above theory. Pertinent data for the specific crystal used in

this experiment are:
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Crystal dimensions. 1/8 inch diameter, 1 inch long

Threshold power _ 20W solar energy

Power output = 40 mW

Ripple frequency = 6 x 104 c/s (at pump level attainable with solar

collector used)

b. Properties of YAG:Nd 3+1

Yttrium aluminum garnet (Y3A15012) has proven to be an ideal host

for the rare earth series ions. In the crystal under consideration the Nd 3+ ions

enter substitutionally into the Y3A15012 lattice at the yttrium sites. Since the

yttrium ion is trivalent, the substitution of Nd 3+ does not necessitate the use of

any charge compensation.

The energy level diagram for this system is shown in Fig. 12. In

this crystal, pump energy causes transitions between the 4f-5d electronic energy
3+

states of Nd In the trivalent rare earths the 4f-5d transitions typically corres-

pond to the absorption of short-wavelength radiation. For YAG:Nd 3+, the pump

bands lie in the ranges 0.50 _m - 0.54 _m, 0.57 _ m - 0.60 bLm, and 0.73 _m - 0.83

_. Thus, the pump bands are quite narrow. This implies that efficient use can-

not be made of broad pump sources such as a high-temperature blackbody or even

a broad non-blackbody source. However, even though inefficient, it is still possible

to pump YAG:Nd 3+ with broad pump sources and, in fact, crystals have been

pumped with a tungsten lamp and the Sun.

Infrared fluorescence in YAG:Nd 3+ occurs between the 4F3/2 level
4

and the members of the I multiplet. Laser action occurs in the transition

4F3/2 4111/2. The 4 -i-_ Ill/2 state is 2000 em above the lowest member of the

1
R. J. Pressley et al., "Solid State Laser Explorations," Interim Technical

Report No. 1, Contract No. AF33(615)2645, p. 1, RCA, Princeton, N. J.
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4I multiplet (419/2). This means that at a temperature of 300 ° K the energy of the

terminal laser state is equal to 9. 5 kT (above ground state). Thus, YAG:Nd 3+

is a four-level laser system even at T = 300 ° K. With E = 9. 5 kT the system

approaches the ideal of terminal state population limited by the non-radiative

lifetime of the terminal state. The fluorescent lifetime of the laser transition at
-1

200 ° 1< J._ 21() ,,.q and the- line.width is approximately 2 cm The lifetime is de-
.......... p .............. v

pendent on the dopant concentration.

The wavelength of the laser radiation for this crystal is 1. 06 p_n, As

case of the CaF2:DY 2+ laser system, the temporal characteristics of thein the

laser emission depend upon the type of cavity reflectors used. When flat-end

crystals are used, the output is a series of spikes. When spherical-end crystals

are used, the output is CW with superimposed damped spiking.

41



As described in Sec. V. B below, a YAG:Nd3+ laser has been operated

under solar-pumped conditions. Widebandelectro-optic modulation was used to

transmit a television signal. Pertinent data for the specific crystal used in this

experiment are:

Crystal dimensions: 0. 094inch dimater, 1.25 inches long

Threshold power _ 100 W solar energy

Power output = 90 mW

Ripple frequency _ 104 - 105 Hz (depending on pumping level}

C,
Properties of YAG:Nd3+-Cr 3+ 1, 2

In this double-doped laser system, both dopants enter substitutionally

into the host lattice of YAG. As in YAG:Nd 3+, the Nd 3+ ions enter directly into

the yttrium sites. The Cr 3+ ions enter into aluminum sites which have an eight-

fold coordination. (There exist A13+ sites with eightfold and fourfold coordination.

Cr 3+ substitutes into an eightfold coordinated site due to crystal field stabilization

at these sites. ) In both cases it is not necessary to add any charge compensation.

Fig. 13 illustrates the energy level scheme for this laser system.

The purpose of introducing Cr 3+ into the YAG laser system is to pro-

vide a mechanism for energy exchange from Cr 3+ excited levels to Nd 3+ levels.

Such an exchange allows the use of the pump bands of Cr 3+ for inducing the laser

transition between the 4F3/2 and 4Ill/2 levels of Nd 3+. Pump radiation causes

the Cr 3+ ions to be excited. The ions then de-excite via a non-radiative transition

to the metastable 2E state of Cr 3+. An energy exchange then takes place between

this state and the Nd 3+ ions which places Nd 3+ ions in the 4F3/2 state, the state

from which the laser transition originates. It is thus possible to obtain laser out-

put by pumping the system with radiation which is absorbed by Cr 3+.

1R. J. Pressley et al., "Solid State Laser Explorations," Interim Technical Report

No. 1, Contract AF33(615)2645, p. 1, RCA, Princeton, N. J.2
Z. J. Kiss and R. C. Duncan, "Cross-Pumped Cr3+-Nd3+:YAG Laser System,"
RCA Internal Report.
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As a result of this energy exchange process, the pump spectrum for

YAG:Nd3+-Cr 3+ consists of the bands 0.40 # m - 0.50/_m, 0.52/_m - 0.66/_m, and

0.73 pln - 0.83 #m. Comparison of these bands with those of singly-doped YAG

shows that for tungsten lamp pumping (3400° K) little increase in pumping efficiency

is expected since the lamp spectrum does not contain appreciable output in the Cr 3+

pump bands. As the color temperature of the source increases, however, appreci-

able output occurs in these bands, and the efficiency of doubly-doped YAG increases

above that of the singly-doped material. Thus for solar pumping (6000 ° K) more

laser output is expected for YAG:Nd3+-Cr 3+ than for YAG:Nd 3+ if samples of crys-

tals of comparable quality are used. High pressure mercury lamp pumping may also

be used for pumping doubly-doped YAG since this source contains appreciable out-

put in the Cr 3+ pump bands.
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It has been observed that the efficiency of the energy transfer process

is very dependent upon the concentration of Cr 3+ in the crystal. The time required

for the transfer to take place decreases with increasing Cr 3+ concentration. This

means the efficiency increases with increasing concentration, since if a transfer

time which is an appreciable fraction of the lifetime of the metastable 2E state of

Cr 3+ exists, fluorescence losses deplete the population of this state and thus

diminish the number of possible energy transfers. It has been possible to grow

YAG:Nd3+-Cr 3+ with Cr 3+ concentrations such that the efficiency of pumping in

the Cr 3+ pump bands approaches 100 per cent. It has also been demonstrated that

laser output can be achieved by pumping only in the Cr 3+ bands.

With the exception of the special properties contributed by the addition
3+

of Cr , the temporal characteristics for CW operation of the 1. 06-pro output of
3+ 3+

YAG:Nd -Cr are similar to those of the singly-doped material.

Solar-pumped operation of a YAG:Nd3+-Cr 3+ laser has been achieved,

but the output of the sample used did not exhibit "good" CW characteristics. This

is due to the fact that the crystal used was not of optimum optical quality. The

laser threshold in this case was again on the order of 80-100 W of solar energy.

2. Optimization of Crystal Size

For a wideband communication system, an optimum laser system can be

defined as one which furnishes the required power output while operating at maxi-

mum efficiency. In this regard, it is shown in Appendix G that there exists an op-

timum size for the laser crystal used in such a system. The analysis of Appendix

G indicates that optimum pumping efficiency is achieved when the crystal diameter

equals the size of the solar image and when the length is chosen according to the

following criteria:
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Ca) Since power absorbed (and hence output power) is proportional to

crystal length, a length should be chosen such that an appreciable

amount of available pump power is absorbed.

(b) Since scattering losses increase with length, the crystal must not

be of such a length that losses offset the effects of greater absorption

with increasing length.

Experiments performed with the three crystals described above have indicated that

cylindrical crystals with a length 20 to 30 times the crystal radius satisfy the above

criteria reasonably well.
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B. SOLAR COLLECTOR

The area of the solar energy collector required to operate a laser is determined

by:

(1) The

(2) The

(3) The

(4) The

(5) The

laser threshold

efficiency of the collection system

efficiency of the laser

magnitude of the solar constant at the position of operation

required laser power output

Examination of these parameters and their interrelationship establishes the solar

collector size required to obtain a specified laser output.

The laser threshold sets an absolute minimum collector size for a given laser

crystal. Power can be obtained from the laser if, and only if, the collector used

is larger than this minimum size.

The threshold power of a four-level cylindrical laser is given by Eq. G-l,

which may be written in the form

where h

AV =

r/ =

t
P

C
O

V

4y2hv3Av_3V
Pth = 3 (23)

c t
o p

1027Planck's constant (6. 62 x erg. s)

laser radiation frequency (Hz}

laser radiation linewidth (cm -1)

index of refraction of laser material

= photon lifetime (s)

= velocity of light in free space (cm/s)

= laser crystal volume (cm 3)

2
or, since V = y r _ for a cylindrical crystal (where r = crystal radius and £ =

crystal length) and laser radiation wavelength ), = c /v,
O O
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The photon lifetime t
P

4 3hc2 2 2
o 17 r AVO_

Pth = 3 (24)

O

is given by

t - £ 77 (25)
p (_c

0

where £ = length of laser (cm)

= loss per pass

ifa << 1.

Using these equations, the threshold powers for the YAG:Nd 3+ and YAG:Nd3+-Cr 3+

can be calculated. As evident from Eq. 17, these calculations are dependent on

crystal geometry and loss properties. The cyclindrical crystals used in the ex-

periments described in this report have the following properties:

£ = LOin

2r = 0.125in

a = 0.05

-1
AV = 2 cm

=1.4
-4

= 1.06 x i0 cm
o

3+
Thus, with these values, the threshold power for both YAG:Nd 3+ and YAG:Nd -

Cr 3+ is

Pth

2

= 4rt3(6.62 x 10-27)(3 x 1010) (1. 96)(0. 317) 2 (2)(5 x 10 -2)
3

-4
(1. 06 x 10 )

= 1.22x 107 erg/s = 1.22W
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If the laser is pumpedby radiation of wavelengthk (rather than ko), the actual

pump power required to reach threshold is ko/k times the value of Pth calculated

above. For example, for pump radiation of wavelength k = 5900 ._, the actual

' isthreshold pump power Pth

O
p, - p

th k th

10600 k

5900

1.22 = 2. 19W

When solar pumping is used, pump radiation within a broad spectrum of wave-

lengths is supplied to the crystal. For example, the solar spectral irradiance at

a distance of 93 x 106 mi from the Sun (mean Earth-Sun separation) appears as

1
shown in Fig. 14. In addition to this broad spectral distribution, laser crystal

hO

02

o I I I I I
0 4000 5000 6000 7000 8000 9000

WAVELENGTH (ANGSTROMS)

Fig. 14. Solar emission spectrum.

1
Constructed from data in "Handbook of Geophysics," USAF, p.

millan Co. , New York, 1960.

I I
I0000 II000

16-16, The Mac-
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wavelength absorption is wavelengthdependent;i. e., absorption within the crystal

does not occur only for pump radiation of a single wavelength. Information relating

to this effect is given in Figs. 15 and 161, where the absorption spectra for

YAG-Nd3+ andYAG:Nd3+ -Cr 3+ are shown.

The information available in Figs. 14, 15, and 16 is useful for determining

how much of the available solar power is actually pumpedinto the laser crystal

as useful pump power. In this regard, it is assumedthat any compensationfor

power requirements resulting from the use of solar pumping (as contrasted to a

narrow spectral pump source) canbe accountedfor by the collection efficiency _1'
which is definedas

^ (),/),o)(Power in pump bands coupled to laser crystals)

_1 = Total collected solar power (26)

where

(k/k o)

Effective pump power coupled to crystal

Total collected solar power

wavelength conversion factor for use with solar pump source (i. e.,

the average conversion factor over all the wavelengths indicated by

the solar emission spectrum shown in Fig. 14)

There is still one other phenomenon to be considered before a value of minimum

collector size can be determined; that is, not all the power in the pump bands

coupled to the crystal excites atoms to the upper laser state. The effect of this

process is accounted for by the pump efficiency _2' which is defined as the ratio

of the number of crystal atoms in the upper laser state to the number of photons

which excite crystal atoms to that state. This efficiency is a function of dopant

concentration, optical properties of the laser material, and the wavelength spectrum

of the pump source.

1R. J. Pressley et al., "Solid State Laser Explorations," interim Technical

Report No. 1, Contract AF33(615)2645, pp. 2-3, May 1965.
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With the above considerations the total efficiency of a solar-pumped laser can

now be determined. Thus, the collected power useful in exciting atoms to the upper

laser state is given by _ 1 _2 times the total power in the pump bands collected.

This collected pump power is some fraction _o of the total solar power collected.

Hence, to reach threshold, solar power equal to Pth/_o _1 _2 must be collected.

Also, in terms of the solar power collected, the laser power output Pout is given

by

Pout = _o_1_2 (total solar power collected)

- (solar power required for threshold)]

(The assumption is then made here that all atoms placed in the upper laser state

contribute to the laser output. ) The overall (total) efficiency _t of the laser is

found as

(27)

P
out

Total solar power collected

= _o _1_'2 (1 - solar power required for thresholdtotal solar power collected )
(28)

Now, to determine collector diameter for a given power output for YAG lasers,

the amount of power in the solar spectrum which can be absorbed as pump power

by the laser must be determined. To do this, consider the equation for the

pump power P absorbed by a laser crystal:
a

Pa = Ac po(A.) _ e-O'(A.) d dA.

A 1

(29)
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where

A
C

Po0[)

d

XI' _'2

= collector area (m 2)

= solar intensity at wavelength >, (W/m 2. rim)

= crystal absorption coefficient at wavelength >, (m -1)

= path length for radiation (m)

= wavelength at edges of pump source spectrum

This integral can be evaluated numerically using the plots of Figs.

For the two types of YAG lasers, the results are:

>, = 9000

P (YAG:Nd )=A ° Po (_) - c
a c )_ = 4000 A

14, 15, and 16.

(watts)

P (YAG:Nd3+-Cr 3+) = 400 A (watts)
a c

The fraction _ may now be determined immediately since the integratedo

solar intensity (at Earth) is known to be 1322 W/m 2. Hence

273.6A

_o(YAG.Nd3+) _ c• 1322 A - 0.206
C

_o(YAG:Nd3+-Cr3+)

400A
C

1322 A
c

= 0.302

The collector area required to achieve laser threshold may now be found if

_1 and _2 are known. Inspection of Eq. 28 shows that for high pump levels,

Solar power required for threshold

Total solar power collected
<<i

and, therefore,

_t _ _'o_1_2 (31)
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3+

Thus, with _o = 0. 206 for the YAG:Nd crystal, the product _1 _2 must equal

0. 097 if the laser operates at an overall efficiency _t of 0.02. The corresponding

requirement for a 0.02-efficiency YAG:Nd3+-Cr 3+ laser is _1 C2 = 0. 066 (when

_o = 0. 302).

As a typical example, assume _1 = 0. 5 and _2

The minimum collector area A is then found as
min

= 0. 194 for a YAG:Nd 3+ laser.

(YAG.Nd3+) 2A . = 1. 22 W = 0.046m

Cmin _o_1_2 (1322 _)

The corresponding minimum diameter is

D (YAG:Nd 3+) = 0.242 m
C

min

A similar calculation for YAG:Nd3+-Cr 3+ yields the same result. This implies

that double-doped YAG can be pumped more efficiently by the solar spectrum than

can singly-doped YAG, since the required efficiency product _1 _2 is smaller for

YAG:Nd3+-Cr 3+ when both lasers operate at 0.02 (or 2 per cent) overall efficiency

at high pump levels. In fact, if _1 _2 = 0. 097 for both lasers, the ratio of overall

efficienctes 7 at high pump levels approaches

_t (¥AG:Nd3+-Cr3+}

_t (YAG :Nd 3+)

_o (YAG:Nd3+-Cr3+) _i _2

_o (YAG:Nd3+) _i _2
(32)

0.302
= 1. 465

0.206

This value implies that for identical operating characteristics (i. e., _1 _2 = con-

stant), the doubly-doped YAG is about 1. 5 times as efficient as singly-doped YAG.
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From Eq. 27, a plot of power output vs collector diameter can now be generated.

Thus, from Eq. 27,

Pout = _o_1_2 (1322 A c - 1322 Acmin ) watts

for operation at 93 x 106 miles range from the Sun. In particular, for _o

_1 = 0.5, and _2 = 0. 194,

(33)

= 0. 206,

Pout = 26.55 (A c - Acmin )

= 26.55 A c - 1.22 watts (34)

In terms of collector diameter, this becomes

2
Pout = 20.8 D c - 1.22 watts (35)

Equation 33 is shown plotted in Fig. 17 for _2 = 0. 194 and _1 = 0.3, 0.5,

0.7, corresponding to overall efficiences of 0. 027, 0.02, and 0. 012, respectively,

thereby illustrating the effect of varying the collection efficiency, _1'

25

2O

D_

5

0

02 04 0.6 0.8 1.0 _.2

COLLECTOR DIAMETER (M)

Fig. 17. Laser power output vs collector mirror diameter for YAG: Nd 3+

laser positioned at Earth with pump efficiency = 0. 194 and

collection efficiency = 0.3, 0.5, 0.7.
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A plot of output power vs collector diameter for a YAG:Nd 3+ - Cr 3+ laser,

operating under the same conditions as the singly-doped YAG laser, is shown

in Fig. 18. The curves in Fig. 18 are obtained by multiplying the coefficient of

Dc 2 in Eq. 35 by the relative efficiency factor y (see Eq. 32).

Plots similar to those in Figs. 17 and 18 can also be obtained for operation

at positions other than Earth. For example, consider operation in the vicinity of

Mars. Here, the integrated solar irradiance is 555 W/m 2 instead of 1322 W/m 2

(the value at Earth). In this case, Eq. 33 is changed to

Pout = (555Ac - 555 %min) (36)

for the conditions _o = 0.206, _1 = 0.5, and _2 = 0.194. Here Acmin = 0.1 m 2

and Dcmin = 0. 374 m.

Plots of Eq. 36 for YAG:Nd 3+ and YAG:Nd3+-Cr 3+ laser operation in the vicinity

of Mars with _ o = 0. 206, _1 = 0.3, 0.5, 0.7, and _2 = 0. 194 are shown in Figs. 19

and 20.
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COLLECTOR DIAMETER(M)

Fig. 18. Laser power output vs collector mirror diameter for

YAG: Nd 3+ - Cr 3+ laser positioned at Earth with pump

efficiency = 0. 194 and collection efficiency = 0.3, 0.5, 0.7.
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Fig. 19.
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COLLECTOR DIAMETER (M)

Laser power output vs collector mirror diameter for YAG:Nd 3+

laser positioned at Mars with pump efficiency = 0. 194 and

collection efficiency = 0.3, 0.5, 0.7.

Fig. 20.
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Laser power output vs collector mirror diameter for YAG: Nd 3+-

Cr 3+ laser positioned at Mars with pump efficiency = 0. 194 tad

collection efficiency = 0.3, 0.5, 0.7.
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C. THERMAL ANALYSIS

i. Introduction

This analysis determines the thermal profile of the laser crystal (i. e.,

its temperature distribution) and establishes cooling requirements. A detailed

analysis of the optimization of cooling fins for dissipation of heat to space is made

also. Consideration is given to the best method for transferring heat from the

laser crystal to the radiator fins and a detailed analysis is made of the preferred

method.

A critical problem in the realization of a solid-state laser oscillator is

cooling the laser crystal so as to maintain it at a suitable operating temperature.

Heretofore, this temperature was quite low and liquefied gases were needed for

cooling. Now, however, the YAG:Nd 3+ (and YAG.'Nd3+-Cr 3+) laser operates at

room temperature (300°K}, which considerably simplifies the cooling problem.

In any case, because of the relatively poor thermal conductivity of the laser crys-

tal material, there is a limitation on laser crystal size and output due to internal

temperature rises above the surface and coolant temperatures. In addition, the

internal temperature gradients in the laser crystal cause thermal stresses that

may be significant.

When a laser is used in a spaceborne communication system, the heat

removed from the laser crystal must eventually be radiated into space. There-

fore, an optimum design for space radiators is important, and it is also quite

important to evaluate, from the system point of view, the radiator area, size and

weight required as a function of laser output.

The remaining thermal problem in a space-vehicle laser system is the

method used to effect the transfer of heat from the laser crystal surface to the

space radiator. This may be accomplished by conduction in a solid (the simplest

method, but poor in performance, as well as requiring very heavy implements) ;
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by convection of a circulating liquid (a complex method, requiring a pump and

goodplumbing, but excellent in performance); or by distillation (excellent per-

formance and light weight, but a techniquemust be developedfor liquid return in

a zero-g environment). Theseconsiderations are discussed further in the following

sections.

2. Laser Crystal Temperature Distribution and Cooling

Of the solar energy absorbed by the laser crystal for "pumping" (i. e.,

maintenance of the inverted, or negative, temperature state), most must ulti-

mately be removed in the form of heat for continuous operation of the laser, that

is, for the maintenance of steady conditions. Accordingly, the temperature dis-

tribution of the laser element is analyzed for the geometry assumed -- namely,

a relatively long right circular cylinder. The following assumptions are made

for this analysis:

a. The thermal properties of the laser crystal are temperature in-

dependent.

b. The heat to be dissipated is uniformly distributed in the laser crystal.

c. Steady (time-independent) conditions prevail.

d. The laser crystal is uniformly cooled on its lateral surfaces.

In view of these assumptions, the laser crystal temperature distribution is axi-

symmetric and is a function only of the radial distance from the crystal axis.

r --

a --

K=

h =

q =

q0 =

t =

radial distance

laser crystal radius

crystal thermal conductivity

thermal surface conductance to crystal surroundings

rate of radial heat transport per unit area

specific rate of internal heat dissipation (per unit volume)

empirical temperature (coolant temperature taken as zero)
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Subscripts a and 0 refer to values of quantities at the crystal surface and

axis, respectively. Other special symbols will be introduced and defined as

needed.

The steady, radial temperature distribution in a conducting, heat-dissi-

pating solid -- subject to the assumptions made above -- is governed by the

relations:

dt
q = -K d--_ (Fourier's Law) (37)

d
_r (rq) = rq 0 (Energy Relationship) (38)

and is subject to the boundary conditions:

q = 0 at r = 0 (Symmetry)

Eq.

hta = qa = -K d(dr)a (Newton's Law of Cooling).

38 may be integrated from r = 0 to r = r t, where 0 -< r • < a; i.e.,

r I

(39)

rq = / rq0 dr+ C 1 (40)

Since q0 is a constant, it immediately follows that:

r 12

rq = qo -_- + C1 " (41)

By replacing r t by r and using the information that q = 0 at r = 0, it is found that:

2
r 1

rq -- qo --2- or q = _-qo r . (42)
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Introducing Eq. 42 in Eq. 37 yields:

Kdt/dr = q0r/2 ,

and integrating gives

2
q0 a

t-t a =--_-- (1-_ 2) _ = r/a

From Eq. 42, qa = q0 a/2; hence, from the second boundary condition given,

t = q0 a/2h, and so:a

t = q0 a/2h + (q0 a2/4K) (1- _2)

or

(2K 1) - _2]t = q0 a2/4K _a +

(43)

(44)

(45)

(46)

The parameter ha/K is conventionally known as Biot's modulus, denoted Bi.

temperature, t* = t/(q 0 a2/4K), may conveniently be defined andA dimensionless

then Eq. 46 becomes:

,2
The maximum temperature occurs at the crystal axis ( _ = 0) and is

(47)

2
¢ * --_ _ a- 1 IA_
_0 Bi " _"'_'

The crystal surface temperature ( _ = 1) is

t * = 2/Bi (49)a

The ratio (to* - ta*)/ta* = Bi/2 is interesting, and expresses the relative im-

portance of the internal temperature rise (depending on crystal dimensions, heat

dissipation rate, and crystal properties) and the surface temperature rise (depend-

ing on coolant conditions). Since Bi = ha/K, for specific values of h and K, Bi is

proportional to a. This shows that as the crystal diameter increases, the internal

temperature rise becomes more and more significant.
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In Sec. C. 3 it is necessary to relate the heat to be dissipated by the

" cooling systems to the laser output. Depending on the laser crystal material,

frequency distribution of the ,,pumping" radiation, and the laser crystal tem-

perature, there will be a certain threshold "pump" rate that will maintain the

inverted population, or negative temperature state, required to achieve laser

oscillation. For the YAG:Nd laser, at the present time, this threshold power for

solar pumping, where solar radiation is accepted over the range of 4000 to 9000

is to be regarded as an empirical quantity. This quantity, denoted here by qth' is

either ultimately dissipated as heat (including spontaneous radiative heat loss to

the surrounding environment) resulting from spontaneous radiative and non-

radiative decay processes from the excited states, or contributes to that part of

the "pump" radiation absorbed by the laser crystal which plays no role in the laser

action.

When the laser is producing power, additional "pump" energy is re-

quired to provide power for the stimulated radiation. We define the laser quantum

efficiency, _2' as the ratio of laser output to this excess of "pump" power over

the threshold pump power. If we denote the laser specific power (output per unit

volume) by p, the heat to be removed from the laser crystal is:

(1 - _2 ) (50)

q0=%h + P

or, in dimensionless form,

* = _ -- 1+
(51)

where q0* = q0/qth' and p* ---P/qth" (Eq. 51 will be used later.)

Eq. 50 is plotted in Fig. 21 for several values of laser quantum (or pump)

efficiency _2" Note from thisplot that for a {2 of 20 per cent, 25 to 40 W of heat

must be dissipated from the laser crystal for a power output of 5 to 10 W from the

1970 solar-pumped laser communication system.
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Fig. 21. Heat to be taken from laser crystal and radiated vs laser output.

The total amount of heat to be radiated from the system must include not

only the heat to be taken from the laser, but also any heat which might impinge on

the surroundings as a result of the pumping process. The total pump power supplied

to the laser is equal to the heat to be dissipated plus the power output. According

tothe analysis of Sec. IV. B above (see paragraph following Eqs. 29 and 30), this

"useless" pump power (that pump power not actually converted into laser output)

and the power collected but unsuitable for pumping must be radiated from the system.

The total power to be radiated is given by:

Laser heat to be radiated + Laser power output

0. 206
- Laser Power Output

Fig. 22 shows the total power which must be radiated versus laser

power output for various values of the laser quantum efficiency, _2"
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3. Optimum Design of Uniform, Rectangular Radiating Fins

The minimum surface area required to radiate heat into space at a given

rate at temperatures not exceeding a certain maximum value will occur if the

entire radiating surface temperature is uniform and at this maximum temperature.

If the radiating surface is convex (or fiat) so that every element of it can "see"

into the complete hemisphere of directions, and no other bodies (planets or parts

of the space vehicle, especially the Sun) can be "seen" from any element of its

surface, the required minimum radiator area is determined by the relation

4
Q1 = A e oT (52)

where Q1 is the heat dissipation rate, T is the maximum temperature, ¢ is the

64



surface emissivity, _ is the Stefan-Boltzmmunconstant, and A is the minimum

radiator area. Whenheat must be dissipated from a concentrated source, as is

the case for the laser under consideration here, it is difficult to distribute the

heat uniformly over the radiator surface. It is much simpler to distribute it

along one edgeof a goodconductingradiating fin. Therefore, from a practical

point of view, optimum fin design will be analyzed by considering fin weight.

The following assumptionsare made:

a. The fin is rectangular and of uniform thickness.

b. Oneedgeof the fin is tmiformly heatedat a temperature T1.
c. The other edgesof the fin are insulated.

d. The fin is one-sided, i. e., there is only one radiating surface. A
two-sided fin canbe analyzedusing these results by considering it
to consist of two one-sidedfins back-to-back.

e. Steadyconditions prevail.

f. The fin is homogeneousand isotropic in its properties.

g. All other linear dimensionsof the fin are large comparedwith the fin
thickness. This permits an accurate, one-dimensional analysis.

The following notation is adopted:

Q = rate of heat transport per unit of fin width

T = T(x) = fin absolute temperature

x = distance along fin

oo = fin thickness

K = fin material thermal conductivity

¢ = surface emissivity

= Stefan-Boltzmann constant

= x 0 - x 1 = fin length

Subscripts 0, 1 refer to the fin end and root, respectively.

symbols will be introduced and defined as needed.

Other special
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The steady temperature distribution in a fin, as described above,

governed by the equations:

Q = -KuJ dT/dx (Fourier's Law)

d Q/dx = -c a T 4 (Energy Relationship)

together with the boundary conditions:

atx = x l(finroot) T = T1; Q = Q1

at x = x 0 (fin end) T = TO; Q = 0 (insulated end).

is

(53)

(54)

The usual method for solution of a system of equations like Eqs. 53 and 54

is to eliminate Q between them, obtaining a second-order differential equation --

which in this case is nonlinear, the solution being rather difficult. Here we will

adopt a different scheme.

yielding:

The independent variable x can be eliminated between Eq. 53 and Eq. 54

dT 1

K_-_ = caT 4dQ (55)

Separating the variables and integrating yields:

1 1 = 1Q2caK_(W 5 - T0 5) = _ (Q2 _ Q0 2) 2 (since Q0 = o) (56)

or

where V= T/T r

(57)

Thus, to dissipate the quantity Q1 of heat at T 1, it is required that

I 2 511/2 Ii 51 I/2
= - r . (58)Q1 CaK°_Tl
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Then, obviously

)1Q/Q1 = 5_T0 _To . (59)

To determine the fin length satisfying these conditions, we must

integrate Eq. 53, namely:

dx _ ] -K_dT = _ K_T1 dT5)l/2Q 2 EaKo_T15)1/2 (T5_ T0
(60)

yielding

1

1 2 co TI3\ 2dr where =
1 -_ _ 5K_ z •

To (T5 ro5i2

(61)

This expression looks better, since r 0 is not known in advance, if we let

T0

Then

3 1/T 0 1

-_ f d_/(g 5- 1) 2= TO
1

(62)

In Eqs. 61 and 62, To can be regarded as a parameter, and 4" can be tabulated

as a function of v 0. The integral converges in spite of the singularity at _ = 1.

We evaluate Eq. 62 in three segments, as follows:

(a) Let _ = 1 + 5 Then for small 5 _5• , _1+55, and

1
1+61 -_- 61 1

2

1 0

(63)
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Thus, for 61= 0.01, i =. 2/45 = 0. 0895. For 61 = 0.04, i = 0. 1790.

(b) For _ large, say

1 5

> 3, (_5_ 1)2 _2

Then,

1 1

? ?i= d 5_ _ _ d_ =_- - =_ .1924-

3 3

(64)

(c) For 1. 01 < 1/T 0 < 3, we compute the integral numerically. The re-
sults of these computations are given in Table II-I.

Table III. EVALUATION OF i (_0) =

_0

f d_///(_5-1) 1/2
1

o i (_ o) _:o i (_o)

2.2 7170,

i.

i.

i.

i.

i.

i.

i.

i.

I.

i.

i.

i.

i.

i.

2.

00

01

02

03

04

05

1

2

3

4

5

6

7

8

9

0

0

0. 0895

0. 1271

0. 1552

0. 1787

0. 1991

0.2787

0. 3837

0. 4550

0. 5092

0. 5525

O.5881

O.6181

O.6437

O. 6658

O. 6850

2.4

2.6

2.8

3.0

4.0

5.0

6.0

7.0

8.0

,

0.

0.

0.

,

O.

O.

O.

O.

O.

7424

7629

7798

7939

8388

8624

8764

8835

8928

9.0

i0.0

0. 8976

0. 9009

0. 9222
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Q1

These results can now be used to design a minimum weight fin to dissipate

of heat at a root temperature T . From Eq° 58, the fin thickness is:
1

2" Q1 aKT15 - (65)

or, denoting QI* = Q1/¢aT14 ' QI** = QI/KTI

_J = -2 QI* QI* - TO
) . (66)

The fin length from Eq.

or

61 is:

i

5
= _ --QI*_

(67)

(68)

The fin volume (proportional to weight) per unit fin width is then:

--3
25 Q1,2 ** _ 5_2V = _a_ = -_ QI_ *'-' ]tT0y _* - #0

The minimum fin weight (optimum) will have that value of r 0 which minimizes

Eq. 69. This value holds for all fins, there being a single/value of r 0 which

v05) 3/2minimizes Eq. 69, namely that value for which _* (r0)/(1 - min.
/ -

Rewriting this in terms of _0 = 1/1"0' we have to find _0 for which
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3

/ 5 2
gO -

£*(_0) = rain.

This computation has been carried out munerically, yielding _0 = 1. 265,

makes r = 0.790. For an optimum fin, then, the fin thickness is
0

(70)

The fin length is

which

5

uJ - 2(0.692) QI* QI** = 3. 615 QI* QI**" (71)

_ 5(. 612)
2(. 832) QI* = 1. 84 QI* (72)

The fin volume (per unit of fin width) is then

and the fin weight is

V = o_ = 6.67Q1.2 QI** ' (73)

M = _,V = 6.67y Q1.2Q1.* '

where 7 is the fin material density. Note from Eq. 73 that the radiating surface

of an optimum edge-heated rectangular fin must be 1.84 times the minimum radia-

ting areas to dissipate Q1 of heat at a uniform temperature T 1, as given in Eq.

52.

Radiator area versus laser power output is plotted in Fig. 23. Fig. 24

shows the corresponding required radiator area for radiating the total heat

which must be dissipated from the laser system.

The product B M, where

A
/3 = fin aspect ratio

root dimension of radiator

edge dimension of radiator
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and

M = fin weight,

is a useful design parameter. A plot of/3 M vs power output for aluminum

radiating fins (_ = 173 lb/ft3), with fin root temperature T at 300°K, surface

emissivity ( equal to 0.9, and several values of laser quantum (or pump}

efficiency _2' is given in Fig. 25. Note from this plot that for 5 to 10 W of

power output from the 1970 solar-pumped laser communication system, the

radiator weight can be made small by adjusting the ratio ft. If _ is made large

by using physically large radiators, or by appropriate coolant flow routing,

large amounts of heat can be radiated by a relatively light radiator. For example,

reference to Fig. 25 shows that for fl = 10, a radiator weighing 40.7 to 140.5

pounds would suffice to accomplish the necessary cooling. For larger B, even

lighter fins would be adequate.
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Fig. 25. Relative fin weight, _M, required to dissipate heat from laser alone

versus laser output.
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D. MODULATION

As discussed in Seco IIo A where introductory remarks were made concerning

the analysis of the performance of a laser communication system, it was pointed

out that, among other things, a choice of modulation method depended on band-

width required° Essentially, the choice divides between narrow-band and wide-

band systems, depending on the information capacity requirements. Also, once the

narrow-band or wideband choice is made, accomplishment of the modulation method

selected depends on the devices available for implementation. In the discussion to

follow, these factors will be analyzed, and the choices made for the communication

system proposed in Sec. II. B will be supported.

1. Magnetic Modulation

An effective technique for accomplishing narrow-band modulation of a

laser source is magnetic modulation. As described in Appendix I, magnetic modu-

lation of a laser beam is based on the energy (or equivalently, frequency) shifts

which occur as the result of application of a magnetic field to an atomic system. By

virtue of the normal Zeeman effect, it is possible to shift the center frequency of

the fluorescent line or to effectively broaden the fluorescent line. The former takes

place when a homogeneous field is applied to the laser crystal and the latter when a

an inhomogeneous field is used. Both methods control the power output of the laser

crystal and thereby accomplish modulation.

Experimental data described in Sec. V below shows the inhomogeneous

field method to be effective in accomplishing 100 per cent modulation. As shown

in Appendix I, the drive current needed for 100 per cent modulation with this tech-

nique is given by

4_kNr2h AYef f ( _- 1) -4

I = L g _ x 10 (amperes) (74)
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where

k=

N=

r --

h=

AVef f =

L =

g =

fl:

0.53 (finite solenoid compensation factor)

number of turns in coil

radius of coil (meters)

Planck's constant

effective linewidth (Hz)

pump power ratio

coil inductance (henrys)

gyromagnetic ratio

Bohr magneton (9.3 x 10 -21 erg/gauss)

The solenoid used in the experiments described in Sec. V. A. 1 below hadthe

following parameter values: N = 20 turns, r = 1/8 inch, L = 6 _H. The laser

crystal used in the experiments had an effective linewidth Aveff(= AV/4) of 7.5 x

108 Hz. Substituting these values in Eq. 74 yields

I = i.28 (_-1) (75)

This relationship is plotted in Fig. 26. From this plot we see that if the pump

power is twice the threshold value (as it was for the experiments conducted), the

current needed for 100 per cent modulation should have been 1.28 amperes. The

actual current needed for 100 per cent modulation was found to be about 1 ampere,

which is slightly lower than the theoretical value. This is not very surprising since

all phases of laser operation were not taken into account by the theory, and several

approximations were made. The theoretical result is, however, accurate enough

for design purposes. Also, it provides a basis for evaluating the effect of variation

of parameters such as pump power, linewidth, doping levels, etc.

A model of the basic magnetic modulation circuit is shown in Fig. 27.

Here a DC current is established in L' , its magnitude being sufficient to create a

magnetic field in L that will inhibit laser action. Modulation is accomplished by

sending a pulse through L in order to create an opposing magnetic field which, if

large enough, will initiate laser action.
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Fig. 27. Magnetic modulation circuit.

Using the model Of Fig. 27, the power requirements for magnetic modula-

tion of a crystal laser were analyzed in Appendix I for the two cases of (1) pulse

modulation and (2) analog modulation. From this analysis, graphs of modulation

power vs information bandwidth were determined and are shown in Figs. 28 and 29.
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Note from Fig. 29 that only about 4 watts of input power is neededfor an information

bandwidthof 4 MHz; however, thoughthe power input required is moderate, it has

been observed experimentally that outputpower decreases rapidly for modulation

frequencies greater than about300 kHzo This apparent maximum rate is thought

to be a result of the spiking repetition rate of the crystal. Thus, anyvideo informa-

tion sent by this method would necessarily be sent at a low frame rate.

2. Electro-Optic Modulation

For some space applications, low frame rate video information may be

adequate, in which case magnetic modulation would be sufficient. However, if

rapid scanning rates are necessary, as they certainly will be in 1970, the laser

radiation can be externally wideband modulated by means of an electro-optic crystal

modulator. The major components of such an optical communication system are

shown in the block diagram of Fig. 30.

TELEVISION

IlL

ELECTRO- OPTI C
CRYSTAL

ANALYZER

.... ===================================================================

i!iiiiii DEMODULATOR

QUARTER -WAVE LENS PHOTODETECTOR
POLARIZER P ATE

RECEIVER _ J

TELEVISION

Fig 30. Major components of a wideband optical communications system.
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In this system, amplitude modulation of the laser beam is accomplished as

follows: The polarizer permits light polarized in only one plane to reach the crystal.

As the plane polarized light passes through the crystal it becomeselliptically polar-

ized, the amountof ellipticity dependingon the voltage applied to the crystal.

Since the analyzer transmits light polarized in only one plane, the intensity

of the light transmitted through the modulator dependson the amount of rotation of

polarization introduced by the crystal. Hence, the light beam is amplitude modulated

in accordancewith the voltage applied to the crystal.

The configuration indicated in Fig. 30 is quite general. The multiplexer

and demultiplexer blocks can be of any type, e.g., frequency division, time division,

etc. Similarly, the modulator and demodulator blocks may be designed for the de-

sired modulation technique, e.g., PCM, delta, analog-FM, etc. In such a system,

there are three major design problems (in addition to design of the laser source

itself}: (1} the modulation technique to use, (2) the type of electro-optic crystal to

use, and (3) the design of the electro-optic flrive modulator. These factors are

discussed below.

a. Comparison of Modulation Methods

A comparison given in Appendix J of modulation methods suitable for

transmitting TV pictures reveals (as evidenced by Fig. 31) that:

(1) VCideband modulation methods such as FM, PCM and delta modu-

lation permit an essentially noise-free TV picture (i. e., a TV

picture having an SNR of 30 dB) to be transmitted over a much

greater range than can be realized by narrow-band modulation

methods such as AM.

(2) If a TV picture having an extremely high SNR is needed, say 50

dB or higher, then wideband PCM, which increases SNR expo-

nentially with bandwidth expansion, is the best choice.

(3) If an SNR of only 30 dB is needed, other wideband modulation

methods provide equal, or better, performance with less com-

plex equipment.
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(4) For an SNR of 30 dB, PCM, deltaand FM modulation methods pro-

vide about the same communication range.

Thus, we conclude that wideband modulation should be used and that,

as far as communication range is concerned, it makes little difference which wide-

band modulation method is used. Hence, the wideband modulation method which

leads to the simplest most reliable equipment should be chosen. Accordingly, we

chose FM for the experimental system. This experimental system is illustrated

in Fig. 32, which is a specific member of the family of systems illustrated in Fig. 30.

Aside from being a simple, reliable modulation method, FM avoids a

serious signal distortion problem introduced by piezoelectric resonances of the

electro-optic crystal. Shown in Fig. 33 is the measured frequency response of a

typical GaAs crystal, with frequency markers at 1, 3, 5 and 7 MHz. It can be

seen that the piezoelectric resonances are prevalent up to about 700 kHz. Through

the use of FM the modulation spectrum can be shifted away from the piezoelectric

resonance range, thus avoiding signal distortion.
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Under an RCA-sponsoredprogram both baseband(i. e., directly modu-

lating the light beam with the TV signal) and FM-subcarrier (i. e., frequency modu-

lating a 5-MHz subcarrier with the TV signal) modulation methods were evaluated

to determine the extent of the distortion introduced by piezoelectric resonances.

The photographs shownin Figs. 34and 35 illustrate the results. With baseband

modulation (Fig. 34) the resultant TV picture is plaguedby "herringbone" inter-

ference due to piezoelectric resonances;with FM (Fig. 35)no such interference

appears.

b. Characteristics of Electro-Optic Crystals

To date the only practical light modulator that allows the realization

of modulation bandwidths of 5 MHz or higher is the electro-optic crystal modulator

illustrated in Fig. 36. As shown in this figure, the electro-optic crystal is placed

between a polarizer and an analyzer. The polarizer permits only light polarized

in one plane to reach the crystal. As the plane polarized light passes through the

crystal, it becomes elliptically polarized, the amount of ellipticity depending on

the voltage applied to the crystal. Since the analyzer transmits light polarized in

only one plane, the intensity of the light transmitted through the modulator depends

on the amount of rotation of polarization introduced by the crystal. Hence, the

light beam is amplitude modulated in accordance with the voltage applied to the

crystal.

1) Drive Voltage Requirements

As shown in Appendix L, the intensity of the light transmitted

through the analyzer is given by

2 /._Tr r_V sin u_t/
I = I sin ..... (76)

O
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Fig. 34. Picture obtained with baseband modulation. 
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Fig. 36. Electro-optic modulator.

where

I = intensity of laser source (W)
o

k = wavelength of incident laser light (cm)

r

n =

d =

=

V =

electro-optic coefficient (specifically, r41) at wavelength k (cm/V)

index of refraction at wavelength k

crystal thickness in direction of applied electric field (cm)

crystal length in direction of incident laser light beam (cm)

frequency of modulating signal (Hz)

_,_t_ amplitude of m__u!atmg vnlt_g_

Eq. 76 shows that the peak-to-peak drive voltage needed to achieve

100 per cent modulation is

1 k d

VX/2 - _ 3

r41 n

(77)

This voltage is known as the half-wave voltage because it results in a 180-degree

shift in the plane of polarization. Substituting Eq. 77 into Eq. 76 gives
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I = I sin 2 ?rV sin oJt (78)

o 2 V_/2

A plot of this equation, Fig. 37, indicates that the modulated beam varies at twice

the modulation frequency. This is a consequence of I reaching a maximum twice for

every cycle of the modulating voltage; that is, I has a maximum when sin cut = 1

and also when sin 0Jt = -1.

To eliminate this "double frequency" effect, the electro-optic

modulator must be biased either electrically or optically. The latter is easier and

can be accomplished by placing a quarter-wave plate, properly oriented to obtain

circularly polarized light, between the polarizer and the crystal.

transmitted intensity is given by (see Eq. L-17)

I = Io sin2 t_rVsin°at+-_-/2VX/2

For this case the

(79)

The plot of this equation, Fig. 38, shows that the transmitted intensity is I /2 wheno

the modulation voltage is zero and that 100 per cent modulation is achieved when the

peak-to-peak modulation voltage is equal to V),/2.

Vm[=

modulation m given by

/ "Vm\

This equation, plotted in Fig. 39, shows that reasonably high per cent modulation

can be achieved even when the modulation voltage is considerably less than V X/2'

For example, 80 per cent modulation is achieved when Vm/Vx/2 = 0.3.

As shown in Appendix L (see Eq. L-18), a peak modulating voltage

] applied to the crystal will produce a percentage depth of(v sin ¢_t) peak /

2) Crystal Constants

Since the solar-pumped lasers described in Sec. IV.A. 1 above emit

radiation at 1.06 gm, the electro-optic crystal modulator used with such lasers must

be operable at this wavelength.
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Constants of electro-optic crystals operating at 1.06 microns are

given in Table IV. A summary of the advantages and disadvantages of each of these

crystals given below leads to the conclusion that the GaAs crystal is the best choice

at the present state of the art.

(a) ADP and KDP

Sterzer I has shown that because KDP and ADP are uniaxial in

the absence of an electric field, the angular aperture is orders of magnitude smaller

than that of cubic crystals such as CuCI and GaAs.

This means that the per cent modulation that can be achieved

with ADP and KDP is critically dependent upon the divergence and the alignment of

1F. Sterzer, D.J. Blattner, and S. F. Miniter, "Cuprous Chloride Light Modulators, "

Jour. of Optical Society of America, January. 1964.
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the laser beam. Sterzer also has shown that because ADP and KDP exhibit only a

1
longitudinal electro-optic effect, they require either transparent electrodes (which

are not efficient at high frequencies) or electrodes with holes (which operate only

with fringing fields). Since the electric field must be applied parallel to the light

path, the modulation voltage needed for a given per cent modulation is independent

of crystal length and, therefore, large voltages are required for a reasonable per

cent modulation. Hence, although ADP and KDP crystals are transparent in a

convenient spectral range and relatively large crystals are available, they do not

show much promise for the proposed application.

(b) Cuprous Chloride

From the standpoint of voltage requirements and the optical

transmission band, cuprous chloride appears to offer considerable promise. How-

ever, large crystals of this material are extremely difficult to grow. Also, strains

and metallic copper filaments commonly occur in the process of crystal growth,

and they tend to make the breakdown voltage very low. After the crystal has broken

down, it is no longer suitable for modulation purposes. Therefore, although CUC1

shows great promise, its full potential will not be realized until better fabrication

techniques are developed.

(c) Zinc Sulphide

ZnS may eventually find application in the visible region, but,

thus far, this type crystal has not been grown in the size required for practical uses.

(d) Hexamine

Hexamine (hexatetramethylamine) is the best electro-optic

modulator currently available for the visible region. In contrast to CuC1, it has

1ADP and KDP can be used in a transverse mode only with extremely monochromatic

light.
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an extremely high breakdown potential. It has the disadvantages, however, that it

is extremely hygroscopic, Vk/2 is relatively high, and it is unstable in contact with

commonly used potting materials.

(e) KT_____N

Geusic I has shown that KTN crystals provide high per cent

modulation with exceptionally low drive voltage. He has measured half-wave voltages

as low as 15.3 volts in KTN crystals measuring 0. 635 x 0. 635 x 2.36 mm, oper-

ated with a DC bias of about 300 volts. Clearly, the drive voltage required for KTN

is more than two orders of magnitude lower than that of any of the linear transverse

crystals listed in Table IV.

However, KTN is not without problems of its own. One prob-

lem, due to the dielectric constant being three orders of magnitude higher than that

of the linear transverse crystals, is that the capacitive load presented by KTN is

rather large. Hence, although the drive voltage requirement is small, the drive

current requirement is large. In other words, the problem of designing a wideband,

high-voltage amplifier has been traded for the problem of designing a wideband, high-

current amplifier. A second problem is that the operating temperature of KTN must

be controlled to within 0.2 ° C, necessitating automatic temperature control. A third

problem is due to KTN being an ionic crystal. To achieve high per cent modulation

it is necessary to apply a DC bias across the crystal. The DC field forces the ions

to drift toward the electrodes, causing the crystal to become polarized. Under nor-

mal operating conditions polarization can occur within one-half hour, preventing the

crystal from functioning properly until the crystal is depolarized. A fourth problem

is that the crystals are extremely difficult to grow. Crystals grown to date are very

small and not entirely cubic.

1j. E. Geusic, F.S. Chen, S.K. Kurtz, J.G. Skinner, and S.H. Wemple, "The Use

of Perovskite Paraelectrics in Beam Deflectors and Light Modulators, " Proc. IEEE_
Vol. 52, pp. 1258-1259; November 1964.
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From the foregoing discussion it is evident that, although KTN

shows great promise, there are formidable research problems to beovercome be-

fore this type crystal canbe used in practical systems.

(f) BaTiO3

This is a transverse-quadratic crystal having properties simi-

lar to those of KTN. Fig. 40 shows the potential gradient measured across a typical

BaTiO 3 crystal after a DC field had been applied for one-half hour. This data clearly

illustrates the polarization problem associated with this type crystal. Unless a uni-

form DC field can be maintained across the crystal, a modulation voltage comparable

to that required for a linear transverse crystal is needed. Since this type crystal

has the same problems which plague KTN, it is not a good choice for the proposed

system.

(g) Bismuth Germanate Bi 4 (GeO4)

This is a newcomer to the field of electro-optic modulators.

It was recently developed by RCA's research group in Zurich, Switzerland. Al-

though its half-wave voltage is relatively high, it is transparent in the visible range

and preliminary results indicate that rather large crystals (greater than 5 cm) can

be grown. With regard to the proposed program, however, it is not likely that

suitable crystals will be available soon enough for the first experimental system.

(h) Gallium Arsenide (GaAs)

Until recently, GaAs showed little potential as an electro-optic

modulator because the low resistivity of available crystals prevented application of

the high electric fields required for a reasonable per cent modulation. However,

research efforts by RCA's Semiconductor Materials Research Group in Somerville,

N. J° resulted in the development of GaAs crystalshaving very high resistivity, on
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the order of 1 megohm-cm. This technical breakthrough converted GaAs from a

laboratory curiosity into a practical device for electro-optic modulation.

The half-wave voltage of GaAs is comparable to that of CuC1

at near IR wavelengths. Also, in contrast to CuC1, long (5 cm and more) non-

hygroscopic crystals of GaAs having high resistivity can be grown and cut and

handled without introducing strains. Clearly, of all the crystals listed in Table IV,

GaAs is the best choice at the present state of the art.
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The transmission characteristics of a GaAs crystal are given

in Fig. 41. In this graph the transmission loss in the spectral band from 1.4 to 16

microns is negligibly low, practically all the attenuationbeing due to reflection at

the ends of the crystal. Therefore, with antireflection coatings on its ends, the

transmission of the crystal can be increased by approximately 50per cent.

To investigate the quality with which an RCA-GaAscrystal

passes an image at IR wavelengths, the experiment shownin Fig. 42was performed.

Light impinging on the numerals "56" and on some resolution lines was ultimately

imaged on photographic film after passing through a GaAs crystal. The image con-

verter was used to convert the IR image into a visible one. The results of this ex-

periment are given in Fig. 43, which showsa photographof the image at the output

face of the crystal. (The crystal used in this experiment was the same as that used

in the TV experiments described in Secs° IV. D. 2.a aboveand Sec. V.D below. )

It is evident from Fig. 43 that GaAs is transparent at IR frequencies with good

quality transmission. Note the clarity of the numerals and the sharpness and

definition of the resolution lines.
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In summary, a careful review of available electro-optic

crystals has revealed that, compared to the other crystals, GaAs offers the fol-

lowing advantages:

It can be grown 5 cm long.

It has reasonably low drive requirements.

It is transparent in a spectral range where high power lasers
are available.

It is nonhygroscopic.

It will not develop strains under normal handling.

It does not require temperature control.

A summary of its physical constants (from Table IV) follows:

Crystal type ................... Valence

Crystal structure .............. Cubic

Index of refraction .............. 3.34 (X = 0.78Dm to 8Dm)

Dielectric constant .............. 11.2

Loss tangent ................... Less than 0. 0003

Electro-optic coefficient ........ 10-10 cm/volt

Spectral range of transparency...0.9 D to 15 Dm

3) Optimum Crystal Length

The analysis given in Appendix N shows that the optimum length

of an electro-optic crystal is _ = -1/In V, where V is the optical transmission of

the crystal. 1 Increasing the crystal length beyond the optimum value will increase

the per cent modulation (for a given drive voltage), but the increased attenuation

through the crystal will more than offset the gain in per cent modulation.

lIf shot noise caused by received signal power is greater than shot noise caused by

received background power and detector dark current, then the optimum length

is _=-2/ln'y
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4) Relationship between Deviation Ratio Ior Modulation Bandwidth /

and Signal-to-Noise Ratio

As shown in Appendix N, the SNR at the output of an FM receiver

is proportional to both the square of the modulation bandwidth and the square of

the per cent amplitude modulation of the subcarrier. If the available crystal drive

voltage is not sufficient for 100 per cent amplitude modulation, then the per cent

modulation will be inversely proportional to modulation bandwidth (or amplifier

bandwidth). For this case the SNR improvement afforded by increasing the modula-

tion bandwidth will be offset by the reduction of amplitude modulation of the subcar-

tier. In other words, if 100 per cent amplitude modulation cannot be realized, in-

creasing the modulation bandwidth will not affect SNR.

At the present state of the art, it is difficult to achieve 100 per cent

amplitude modulation with an information bandwidth of 5 MHz because the useful

length of electro-optic crystals is restricted. As shown in the previous section,

long GaAs crystals can be grown, but their transmission characteristics at the

wavelengths where suitable wideband detectors and high-power lasers are available

restrict their useful length to about 1 cm. Development of wideband photodetectors

and high-power lasers that will operate efficiently at wavelengths of 2 micrometers or

longer would change this situation, allowing the full benefits of wideband FM to be

realized. Likewise, development of an electro-optic crystal similar to GaAs but

having good transmission characteristics at wavelengths where multiplier phototubes

can be used effectively will also allow the lull benefits of wideband FM to be realized.

3. Wideband Electro-Optic Modulator

In the experiments described in Sec. V, the hybrid tube-transistor drive-

amplifier shown in Fig. 44 was used to modulate the GaAs electro-optic crystal.

The combination of tubes and transistors was used in order to minimize weight yet

provide maximum possible drive voltage for the GaAs crystal. The schematic of

this drive amplifier is shown in Fig. 45.
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Fig. 44. Electro-optic modulator. 
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Y,. BEAM EXTRACTION, COLLIMATION_ DIRECTING,
AND AIMING

When the beam of light emerges from the laser, it is unmodulated and travels

along the axis of the solar energy collector. Several operations must be performed

on the beam before it can be made useful as an information carrier, namely:

(1) The beam must be extracted from the mount supporting the solar energy
collector and laser.

(2) The beam must be collimated and reduced in size so it can be directed

through the electro-optic modulator crystal.

(3) After modulation, the beam must be recollimated to the narrow divergence

required for the transmitted beam.

(4) The beam must be aimed toward the receiving station.

1. Beam Extraction

For a solar-pumped laser in which pump energy enters the end of the

laser crystal, the beam emerges from the laser along the axis of the solar energy

collector. Since the collector always points toward the Sun, the beam from the

crystal is either directed at or away from the Sun. If the laser is to be used as part

of a communication system, provision must be made for directing the beam to the

receiving point. This involves extracting the beam from the mount holding the

solar energy collector and laser crystal along some direction fixed with respect

to the Earth or a space vehicle (depending on the application) and then directing the

beam to the desired point.

The method of beam extraction to be employed depends upon the type of

mount used. For an Earthbound system (such as System 1 of Table I in Sec. II. B)

an equatorial mount is conveniently used to aim the energy collector at the Sun.

Such a mount is similar to that used for the existing experimental system, as

illustrated in Fig. 46. In this configuration, the beam from the laser follows the

path indicated, being directed by reflections from six appropriately placed prisms.
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Fig. 46. Beam extraction from an equatorial mount.
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For this particular arrangement, the beam emerges from the mount along

the equatorial axis, the direction of which is fixed with respect to Earth. This

extraction scheme is rather complicated due to the large number of reflections

involved and was designed for use on a mount with no provisions for such extrac-

tion. A simplified extraction method for use on a mount which allows passage of

the beam along the equatorial and elevation axes is shown in Fig. 47. Only two

reflectors need be used in this case to extract the beam along the equatorial axis.

I

For spacecraft-mounted systems (such as Systems 2,3, and 3 of Table I

in Sec. II. B), the energy collector and laser can be supported by an azimuth-eleva-

tion type mount. A simple scheme for beam extraction from this type mount is

shown in Fig. 48. In this case, the beam emerges along the elevation axis which

is fixed with respect to the spacecraft. Again, only two reflectors are used.

2. Beam Collimation

A scheme to pass the beam through an electro-optic modulator and to

collimate it to a desired divergence is shown in Fig. 49. In order to specify the

properties of the lenses and their relative locations in such a configuration, the

following notation is needed, where the letters A, B, C, D, and E represent

individual lenses and their positions:

5 £ = intrinsic divergence of laser beam (rad)

5AB = divergence of beam in region between lenses A and B (rad)

5 = divergence of beam passing through modulator (rad)m

5t = divergence of transmitted beam (rad)

d = diameter of laser crystal (m)

Lxy = distance between location x and location y (m)

F x = focal length of lens x (m)

If the laser crystal has reflectors which are confocal, lens A is placed

such that its focal point coincides with the center of the laser crystal at O. This
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ensures that the divergence 5AB is minimized andwill approachthe diffraction
limited beam divergence as a limit. Lens A must have a minimum diameter of

d + LO_A5_ in order to intercept the entire beam. (In general, the diameter of a
beam with divergence 6 increases by L5 in traveling over a distance L. ) The beam

then proceeds from the "laser assembly" (consisting of the laser crystal and lens A)

over the distance LAB to the "modulator assembly" (consisting of the modulator

crystal andlenses B, C, D, andE). On arrival at lens B, the beam diameter is:

Beam diameter at B = d + LO_ A 5£ + LAB 6AB .

The minimum diameter of lens B is equal to the beam diameter at B.

(81)

It will now be assumed that the beam diameter must be reduced by a

factor R before it passes through the modulator crystal to achieve efficient

modulation. Thus,

diameter of beam after lens C
R =

diameter of beam after lens B (82)

To accomplish this reduction in diameter, certain restrictions are

placed on the focal length of lenses B and C, namely:

F C
- R

F +F_ = L _
B C BC

(83)

(84)

If R and LBC are specified, the focal lengths F B

mum diameter of lens C are determined:

1
FB - 1 + R LBC

R
FC = 1 + R LBC

and F C and the mini-

(85)

(86)

k,
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The value of R is chosen to make the beam diameter less than the thickness

of the modulator crystal. LBC is chosen to satisfy the practical limitations on the

size of the optical assembly and the ability to obtain optics with the required com-

binations of focal length and diameter.

After passing through the distance LCD, wherein the modulator is con-

tained, the beam arrives at lens D with a diameter given by:

Beam diameter at lens D = Minimum diameter of lens D

=R (d+LoI AS_+LAB 5AB ) + LCD 8 m (88)

The modulated beam must now be recollimated to the divergence 6t. This

requirement demands that the focal lengths of lenses D and E be related as follows:

FD
m __ m

F E 6 m
(89)

F D+ F E = LDE (90)

Since 8t is assumed known, only LDE must be determined. LDE is chosen

so that the optical assembly is not excessively long. Finally, the minimum diam-

eter of lens E can be found:

8

Miuimumdiameteroflens E=_8_t:[R(d+ LOeAS£+ LAB 8AB)+LcD 8m] (91)

The above information may be summarized as shown in Table V. In this

table, the results of the analysis of a typical example are listed along with the

general system parameters defined above.
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Table V. COLLIMATION SYSTEM PARAMETERS

General System Parameters

LOA

!

LOA

LAB

LBC

LCD

LDE

8_

8AB

FA (= LOA )

FB

FC

FD

FE

R

d

Diameter A (= d + LOtA 6_ )

Diameter B (= d + LOtA 8_ + LAB 8AB )

_,_ _- _, L_ I LO _ , LAB AB

Diameter D (= Rid + LO' A 6_ + LAB 6AB ] + LCD 6m)

_ 8m _n )Diameter E i _ It [d+ LOt A 8_+ LAB _AB] + "_'-t Lcd _

Typical System

5 am

1 cm

100 cm

2 cm

10 cm

131.04 cm

0.1 tad

3 mrad

9 mrad

100 urad

5 cm

1.6 cm

0.4 cm

1.44 cm

129.6 cm

1/4

0.4 cm

0.5 cm

0.8 cm

0.2 cm

0.29 cm

26.1 cm

3. Directing and Aiming the Beam

After the beam has been extracted from the mount supporting the solar

energy collector and laser, the operations of aiming and directing the laser beam

must be performed. These operations, while not independent, may be analyzed

separately.
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a. Directing the Beam

This operation involves the deflection of the beam from its extraction

path to the target. Two suitable deflecting devices are the plane mirror and the

Dove prism. Their use as deflectors may be described in the following manner:

1) The Reflecting Mirror

Consider the plane mirror shown in Fig. 50.

x?

I ]
VIEW IN DIRECTION ¢_1)

OF o)

G_ XI

INCIDENT 2_
BEAM

REFLECTED
BEAM

X2

DIRECTION Q OF o)VIEW IN

X I

I_M_I2._RROR AXES_/ INCIDENT BEAM IS

--ALONG X 2 AXIS.
REFLECTED

BEAM

o) G:_:O MIRROR AXES

COINCIDENT WITH SPACE

AXES Xl,X 2

b) ROTATION BY G ABOUT Xl AXIS c) ROTATION BY ,8 ABOUT X 2 AXIS

AFTER ROTATION ABOUT X I AXIS
BY ANGLE Cl

Fig. 50. Plane mirror used as a beam deflector.

Assume that a beam of light parallel to the x 2 axis impinges on

the mirror surface. According to the law of reflection, ff the mirror is inclined

to the x 2 axis by an angle _, and then rotated about axis x 2 by an angle /3, the re-

flected beam is deflected by an angle 2_ from its original path in the direction of

the inclination about axis x 2 and by an angle _ from its original path in the direc-

tion of the rotation about x 2. If the incident beam of light corresponds to the ex-

tracted laser beam, it is possible to direct it into ,,almost any point" in the 4_
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steradian solid angle about the intersection of the axes x I and x 2 by allowing

and _ to assume values in the ranges 0 < s < 2' 0 < _ < 2y. The phrase "al-

most any point" must be used since it is not possible to deflect an entire beam of

finite diameter at certain angles with a mirror of finite size. The relationship

between mirror size and beam diameter is illustrated in Fig. 51. It is seen that

if the diameter of the incident beam is 2p, and if the entire beam is to be reflected

when the mirror is inclined by angle s with respect to x 2, then the mirror must

have a minimum length L (p, S)mi n of 2p csc s along its inclined axis and a length

of 2p along its other axis (which lies along Xl). Fig. 52 is a plot of the ratio

L (p, S)min/2P vs angle of inclination and may be used either to determine a

limiting angle s o for a mirror with given dimensions L (-> 2p} and 2p, or to

determine the value L (p, s o) if 2p and ob are specified. Thus,

(92)

L (p,s o) = 2D csc s o (93)

am.
v

;_;DENT

BEAM

_--- _ _ PLANE MIRROR

LENGTH ALONG X I AXIS

IS 2p

REFLECTED BEAM L(p,a) : 2p csc a

Fig. 51. Relationship between mirror size and beam diameter.
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It is important to notice from Fig. 52 that as _ _ 0, the length of the reflector

along its inclined axis must increase without limit if the entire beam is to be re-

flected, regardless of the value of 2 p.

2) The Dove Prism

A Dove prism used as a beam-deflecting device is shown in Fig.

53. In this case, the laser beam (centered along space axis Xl) enters the prism

through one end. If the prism is rotated about prism axis x 3 by an angle _ and

about axis x 1 by an angle fl, the beam emerges from the opposite end of the prism

along a line inclined by an angle _ in the direction of the rotation about x 1 and an

angle 2 _ in the direction of the rotation about x 3. It is possible to direct the beam

into any point in the 2 rr steradians forward of the plane which contains the x 2 axis

and is normal to the x 1 axis. In this case, straight through transmission _ _ = 0

may be accomplished.

b. Aiming the Beam

Thus far, explicit mention was not made of the method of controlling

the position of the deflector used. For an Earthbound experimental system, the

beam direction can be accomplished by manual positioning. On a space vehicle in

motion, a continuously variable servo control will be necessary. In either case,

it would be desirable to have a method of directly (visually) observing the target

point of the deflected beam. The co,,,maLm_............ syster:_ and u___^*n^^*_ ___.... _ _,_"_....

the introduction of an aiming device which will allow simultaneous visual observa-

tion of the target and the position of the transmitted laser beam with respect to the

target. Such a sighting device is shown in Fig. 54. This sighting device functions

as follows:

(1) The laser beam is directed onto the aperture of the beam splitter

such that almost 100 per cent of the incident beam is passed.

(2) The small fraction not transmitted is reflected onto M and then

back through the beam splitter into the telescope in such a way
that this reflected beam is perpendicular to the direction of the

transmitted beam. (This requires an accurate alignment here. )
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(3) The target, assumed illuminated, sends light to the transmitter

site which is directed onto the beam splitter and then into the

telescope.

(4) The superimposed reflected portion of the laser beam and target

are viewed through the alignment telescope and image converter.

This view shows the target of the transmitted beam.

Another possibility for a sighting device is an accurately positioned

separate astronomical telescope which is boresighted with the transmitted laser

beam. This method of sighting offers no built-in target-beam coincidence indica-

tion and the convenience of alignment solely at the transmitting station. These

,'disadvantages" do not, however, preclude the use of the boresighted telescope.

c. Some Practical Considerations

Either of the beam deflectors described can be incorporated into the

collimation optics

(1)

(2)

in either of the two accessible regions; i. e.,

In the path LAB -- In this position the deflector size is minimal
as a result of the small beam diameter (2 p) here. Thus the

weight of the deflection device is minimized. However, insertion

of the deflector here requires that the massive ,,modulator

assembly" portion of the collimation optics be movable. It is

conceivable that this may not be desirable since it imposes

rather severe requirements on the servo system which would

control the position of the ,,modulator assembly• "

After the collimation optics -- Here, the size of the deflector is

determined by the size of the final collimation lens. The size of

this lens is in turn determined by the divergence of the transmitted

beam, large lenses being required for small values of beam diver-

gence. Thus, for the case of a small divergence beam being con-

sidered, a relatively large deflector would be necessary. If a

plane mirror is used, this size requirement can be satisfied rather

easily (for limited range of inclination angle _). The mirror need

not be excessively massive. On the other hand, if a large Dove

prism is used, the mass involved becomes difficult to maneuver
in a manner similar to that of a large movable ,,modulator assembly"

as mentioned in (1) above.
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These considerations indicate that a plane mirror inserted after the

collimation optics is the best compromise between size and movability. The size

limitations on the mirror due to its angular position can be overcome by appropriate

positioning of the space vehicle.

The aiming system described above is most conveniently placed in

the path LAB, since in this position the sizes of the elements are minimal, and

the magnification by the telescope formed by lenses B, C, D, and E can be used

for furnishing an enlarged target image to the aiming system.
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Section V

EXPERIMENTAL RESULTS

A. LABORATORY PUMPING

The preliminary tests of the lasers used in the solar-pumped experiments

were performed in the laboratory, where ideal conditions (freedom from strayradi-

ation, rigidity of apparatus) could be simulated. These tests were conducted to

evaluate the best materials and techniques which would later be used in solar-

pumped operation.

The lasers were tested in the pumping ellipse schematically shown in Fig. 55.

Operation of this device followed the standard procedure of placing the laser at one

focal axis and the proper pump lamp at the other focal axis.

I II

TOP SECTION

I I PUMP

I I SOURCE
. i LOCATION
I ' I LOCATIONS OF FOCI

BOTTOM SECTION

LASER LOCATION

Fig. 55. Geometry of the laboratory pumping ellipse.
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The types of lasers used in this test are conveniently divided into two classes:

those which operate at temperatures < 77°K (CaF2:DY 2+) and those which operate

at 300°K (YAG: Nd 3+ and YAG:Nd3+-Cr3_).--

1. CaF2:Dy2+ Laser

Several lasers of this type were operated inside a linear Dewar inserted

in the pumping ellipse. The experimental arrangement is shown in Fig. 56. In

this setup, the CaF2:Dy2+ crystal is mounted in the center of the Dewar with super-

cooled (68_K) liquid nitrogen flowing over it. Sodium nitrite is pumped through a

glass jacket surrounding the crystal to filter the ultraviolet radiation from the

pump lamp. The Dewar is mounted at one focus of the elliptical cavity (shown with

cover removed) and a 1 kW Sylvania DXN lamp (tungsten filament, quartz envelope,

iodine vapor atmosphere) is mounted at the other focus. Both the position of the

lamp within the cavity and the position of the cavity with respect to the Dewar are

adjustable by means of control knobs located on the sides of the cavity assembly.

The laser output was detected with a fixed indium arsenide photodiode

(Philco L-4530), the output of which was amplified and displayed on an oscillo-

scope. In this way, information about the temporal characteristics of the laser

emission was obtained. The spatial distribution of the laser output was measured

by displaying the amplified output of an indium arsenide photodetector, which was

mounted on an X-Y micropositioner on the Y-axis of an X-Y recorder, the X-axis

of which was calibrated in a position coordinate. The power output of the laser was

measured by directing the laser beam into a Westinghouse laser radiometer (Type

aN-l).

The above measurements were performed on several CaF2:DY 2+ lasers,

some of which were reduced by a gamma-radiation process and others by the elec-

trolytic process. Of those tested, the best was selected for use in a magnetic modu-

lation experiment in the laboratory and for later use in the solar-pumped experi-

ments. The crystal selected had the following characteristics:
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Fig. 56. Laboratory laser setup. 

2+ 
Dy concentration 

Length 

Diameter 

Power output 

Threshold pump power 
(tungsten lamp pumping) 

Laser reflector type 

Frequency of ripple on output 

Linewidth (A U )  

Reduction method 

Laser wavelength 

0.03 molar per  Cent 

1 .0  inch 

1/8 inch 

M 40mW 

x 300 W 

spherical, 2 .0  inch radius of 
curvature 

4 
x 10 HZ 

9 
3 x 1 0  Hz 

electrolytic 

2.36 pm 
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The laboratory magnetic modulation experiment consisted of placing the
magnetic modulation coil, (a 20-turn three-layer solenoid, woundconcentric with
the crystal and centrally located along its length) and driving it with the pulse
modulator electronics. The solenoidwas 1/8 inch long, 1/4 inch in diameter, and

had a measured inductance of 6/_ H. It was found that 100per cent modulation

could be achieved with a current of one ampere in the coil. Modulation at an audio

frequency rate (voice) was achieved. Detection of the modulation was accomplished

by using the indium arsenide detector as the input element of a PFM receiver.

2. YAG:Nd 3+ and YAG:Nd3+Cr 3+ Lasers

These lasers were operated in the same ellipse used for the CaF2:Dy2+

experiments. The ellipse was used in essentially the same manner as described in

Fig. 55. Since these experiments could be conducted at a temperature of 300_K, the

Dewar system was replaced by a "flow tube" which allowed the laser crystal to be

force-cooled by pure water. Fig. 57 illustrates the arrangement of the apparatus

used in the 300_K experiments.

TOP VIEW

PUMP CAVITY,_

U_

T
COOLANT

I NPUT

PUMP LAMP,_ ]

I I
I

., [
GLASS FLOW TUBE LASER SUPPORT 1 ]

{TUNGSTEN LAMP SHOWN )

COOLANT
OUTPUT

Fig. 57. Arrangement of apparatus for 300°K experiments.
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The pump source for the YAG:Nd3+lasers was the 1-kW Sylvania DXN

tungsten-iodine vapor lamp used for pumping CaF2:Dy2+. The source for the

YAG'Nd3+-Cr3+ lasers was a 1-kW General Electric A-H6 mercury vapor lamp.

This selection of lamps wasbased on knowledgeof the laser absorption spectra and

the emission spectra of available lamps.

The detector which was used in the 300°K laboratory experiments was an

RCA 7102 multiplier phototube. The output of this detector was displayed on an

oscilloscope.

Successful laboratory operation of the YAG:Nd3+-Cr 3+ laser was achieved,

and the temporal characteristics of the outputs were studied. Results of these ex-

periments indicated that the double-doped crystals would probably be unsuitable as

CW carrier generators in modulation experiments. (This was later found true in

solar-pumped experiments described in Sec. B below. ) Much spiking was ob-

served in the output.

It was not possible to operate the YAG:Nd 3+ laser in the laboratory. This

was not unexpected since the narrow absorption spectrum of the laser did not match

the broad emission spectrum of the tungsten lamp well, and the 1-kW power output

of the lamp did not permit the laser to absorb enough effective pump power. No

further attempt was made to operate single-doped YAG lasers in the laboratory.

It was decided that these tests could best be performed during solar-pumping opera-

tion where the spectral match between laser and pump source was more favorable.

Power output of the YAG:Nd3+-Cr 3+ lasers was to be measured with the

Westinghouse RN-1 laser radiometer, but an explosion of an A-H6 lamp irrepara-

bly damaged the pump cavity and such measurements could not be performed in the

laboratory.

Two laser crystals were selected for use in solar-pumped operation. One was

the YAG:Nd3+-Cr 3+ laser which exhibited the least spiking and the other was a
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YAG:Nd3+ laser which was knownto be of goodquality.

following characteristics:

YAG:Nd3+-Cr 3+ Laser

Nd 3+ concentration

Cr 3+ concentration

Length

Diameter

Threshold pump power

(Hg-lamp pumping)

Laser reflector type

Frequency of ripple on

output

YAG:Nd 3+ Laser

Nd 3+ concentration

Length

Diameter

Threshold pump power

Laser reflector type

These crystals had the

1.3 atomic per cent

1.3 atomic per cent

1.0 inch

0. 094 inch

600 watts

spherical

5 x 104 Hz (deep spiking, which is

pump power dependent)

1.3 atomic per cent

1.25 inches

0. 094 inch

not attained

spherical

B. OPERATION OF THE SOLAR-PUMPED LASER MODEL

2+
1. The CaF2:DY Laser

In these experiments, the Dewar assembly used in the laboratory experi-

ments was mounted on the optical bench affixed to the equatorial mount in the man-

ner shown in Fig. 58.

This laser is side pumped. A rectangular solar image formed by the

cylindrical lens is directed onto the crystal side. The same type of cooling (su-

percooled liquid nitrogen) used in the laboratory experiments was used in solar-

pumped operation. Also, the same Philco L-4530 indium arsenide photodetector
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2+ . Fig. 58. Arrangement of apparatus for  solar-pumped operation of CaF :Dy 
2 

was used to observe the laser characteristics. Reliable operation of the laser wa 

obtained and it was found that the results of solar-pumped operation were very 

similar to those obtained in the laboratory. Approximately 80 to 100 W of solar 

power were needed to reach threshold. Ripple frequency was  6 x I O 4  Hz. 

The magnetic modulation coil and electronics were incorporated into the 

A PFM receiver was connected to the output of the photodetector. apparatus. 

The first attempt at magnetically modulated solar-pumped operation was successfi 

and quality of a voice transmission was good. This experiment was repeated sev- 

eral times and was found to give repeatedly good results. 
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2. YAG:Nd 3+ and YAG-Nd3+-Cr 3+ Lasers

In these experiments, there was one major departure from the type of

operation used in all previous experiments. These lasers were end pumped. It

had not been possible to achieve end-pumped operation in any of the laboratory ex-

periments due to the lack of a pump source of sufficient intensity and an efficient

energy coupling technique. The mechanical arrangement of the Dewar assembly

pumping in the CaF2:Dy2+ solar-pumped experiments. End pumpingprecluded end

was achieved by using one of two specially designed water-cooled pump cavities.

(These "flow tubes" are described in detail in Sec. V. C below. ) Use of these flow

tubes allowed a better optical coupling between the laser and solar image than had

previously been obtained.

In the first experiments, the YAG:Nd3+-Cr 3+ laser described above (Sec.

V. A. 2) was used. Operation was successful and results similar to those obtained

in the laboratory were obtained. The threshold of this laser was approximately

100 watts 1 of solar power. As expected, the output showed severe spiking behavior

and did not offer much promise for success in the anticipated electro-optic modula-

tion experiments. For this reason, further tests on this laser were not made.

The YAG:Nd 3+ laser was operated in the flow tube used in the YAG:Nd 3+-

Cr 3+ experiment. An RCA phototube 7102 (with a 1.06 tzm filter on its face) was

needed to detect the laser output. Output of this laser showed a good DC level with

a ripple (fi'equency _ 5 x 104 Hz) of approximately 20 per cent. The threshold of

1
These and other pump power figures refer to collected solar power. Actual

pump power coupled to the lasers is approximately 25% of these values, since the

crystal end area was approximately one-fourth the size of the solar image. Pump

power measurements were made by measuring the solar constant with an optical

calorimeter (Optics Technology, Inc. model 600) and the actual exposed area of the

solar energy collector. Pump power was varied by partially blocking the mirror

aperture with circular rings.
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this laser was foundto be approximately 100watts. Measured power output of this

laser under goodpumping conditions (clear, sunnyday) was on the order of 90

milliwatts, making it the most powerful, most efficient laser tested. The proper-

ties measured indicated that this laser could be used as a source for electro-optic

modulation experiments.

The modulating element which was to be used in an attempt at wideband

modulation was a GaAscrystal. This material exhibits anelectro-optic effect un-

der the influence of relatively high electric fields. Typical dimensions of the

crystals available are 1 inch x 3 mm x 3 ram. The crystal andthe associated elec-

trical andoptical componentsrequired for electro-optic modulation experiments

were placed in the laser system as shownin Fig. 59.

The purpose of the lenses was to direct a major portion of the diverging

laser beam (due to spherical crystal ends) into the GaAs crystal, and then onto a

small portion of the photocathode of the detector. The first of these was to ensure

adequate depth of modulation and the second was to reduce the effects of background

light on the photomultiplier operation.

A television signal (bandwidth = 5 MHz) was transmitted over the laser

beam. Fig. 60 shows the result of a transmission on a nearly perfect day with a

well adjusted experimental apparatus.

It was found that alignment of the elements of the optical system was

critical. It was found somewhat difficult to obtain optimum alignment with the par-

ticular elements used and that a more rigid arrangement would be desirable. De-

spite this, reliable operation was achieved even after a complete disassembly and

reassembly of the apparatus.
L
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MULTIPLIER PflOTOTUBE

_ ELECTRO- MODULATOR

0 _T _ C

__ _LOWTO,_

EQUATORIAL MOUNT

Fig. 59. Arrangement of apparatus for solar-pumped electro-optic

modulation experiments.
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Fig. 60. Television picture transmitted via a solar-pumped laser. 

C. FLOW TUBE CONSTRUCTION 

The flow tube is used to accomplish two functions: 

(1) Maintaining the YAG lasers at the proper operating temperature 
(300°K) under conditions of solar pumping. 

(2) Serving as a pump cavity for the laser crystal. 

The first flow tube which was used during the YAG laser tests described above 

in Sec. V. B is shown in Fig. 61. 

The flow tube is made in essentially three sections: 

(1) The crystal holder section 

( 2 )  The coolant section 

(3) The crystal holder support section. 
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The first of these has a small four-jaw chuck which holds the laser crystal.

This section is in turn held by the third, and its posifion (adjustable) with respect

to the third section determines the position of the laser in the coolant section.

Cooling of the laser is accomplished by forcing cool water through the flow tube un-

der pressure. The system used in the experiments performed was the closed sys-

tem shown schematically in Fig. 62. Pure water was used to prevent damage to

crystal end reflectors from particles contained in ordinary tap water. The water in

the closed system was cooled by passing it through the copper-coil heat exchanger.

The coolant section also serves as the pump cavity. The inside walls are

silver plated and diffusely reflect pump light entering the flow tube at other than

normal incidence so that efficient use can be made of the pump power available.

This reflection serves to effectively increase the path length for the solar pump ra-

diation in the crystal.

/FLOW

COOLANT !
PUMP

NO SCALE L. L

TUBE

COPPER COIL HEAT

COOL WATER

EXCHA;_GER

BATH

Fig. 62. Closed-system laser cooling.



The chief disadvantage of this flow tube is the long path which the diverging

laser beam must follow (approximately 6 inches in a 1/8 inch diameter tube) before

it can be utilized. In traversing this path, reflections from the side walls of the

tube cause interferences among the various portions of the beam. The beam should

be collimated as soon as possible after its emergence from the laser to ensure that

a well-shaped beam is available for use, particularly when electro-optic modulation

experiments are conducted.

In an attempt to overcome this difficulty, as well as test the pumping efficiency

of two different-size pump cavities, a second flow tube illustrated schematically in

Fig. 63 was constructed.

This tube allows the laser beam to be utilized after it travels approximately

one-half inch from the laser crystal. Also, for certain values of laser reflector

centers of curvature and focal lengths of the collimating lens, a collimated laser

beam can be extracted directly from the flow tube.

"O" RING

TYPE SEAL_

COOLANT
EXHAUST

r
COOLANT

I N TAKE

COLLIMATING
LENS

CHUCK PRESSURE
ADJUST RING

Fig. 63.

CRYSTAL
CHUCK

Second experimental flow tube.
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The YAG:Nd 3+ laser was mounted in the second flow tube and was operated un-

der solar-pumped conditions. It was found that the threshold of the laser was ap-

proximately the same as that previously obtained with solar pumping in the first

flow tube. This indicated that the large diameter pump cavity was not necessary

and that efficient pumping could be achieved in a cavity 3/16 inch in diameter.

(Th e diameter of the first tube was 7/16 inch. )

D. ELECTRO-OPTIC CRYSTAL MODULATOR

Using the modulator circuit shown in Fig. 45 to drive a GaAs crystal measur-

ing 3 mm x 3 mmx 2 cm with a 1000-volt (peak-to-peak) 5-MHz sine wave, 30 per

= 10 -10 =
cent modulation was achieved. Substituting n = 3.34, r41 , d 0.3 cm,

and _ = 2 cm into Eq. 77 indicates that the half-wave voltage should have been

Vk/2 = 2140 volts; and substituting V = 500 volts into Eq. 80 indicates that them

per cent modulation should have been m = 66 per cent. The difference between the

experimental and theoretical results can probably be attributed to strains within the

crystal.

The modulating perfomance of the electro-optic modulator of Fig. 45 is illus-

trated in Fig. 64 where a light beam passing through it is modulated with a 5-MHz

sine wave and then detected with a multiplier phototube.
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A 5MHz MODULATION

LIGHT BLOCKED

Fig. 64. Performance of electro-optic modulator.
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Section VI

CONCLUSIONS AND RECOMMENDATIONS

1. Compared to other laser pumping methods, solar pumping offers a reduction of

more than 6:1 in both the size and weight of the laser transmitter.

2. A television picture can be transmitted via a solar-pumped laser using an electro-

optic modulator. A 5-MHz information bandwidth was demonstrated using a

GaAs electro-optic modulator. FM-subcarrier modulation was used to avoid the

effects of piezoelectric resonances in the GaAs crystal.

3. The relative merit of different wideband modulation methods depends upon the de-

sired output SNR. If an extremely high SNR is needed, say 50 dB or higher, then

a wideband modulation method such as PCM, which increases SNR exponentially

with baadwidth expansion, is the best choice. But, if an SNR of only 30 dB is

needed (as in the TV system considered here}, other wideband modulation methods,

such as wideband FM or delta modulation, provide equal, or better, performance

with less complex circuits.

4. Extrapolating the state of the art to 1970 indicates that a solar-pumped laser oper-

ating at 1.06 iJm could be developed having the following characteristics:

Power output ..................................

Transmitter beamwidth ..........................

Receiver beamwidth .............................

Collector diameter ..............................

Receiver area ...................................

Accuracy of aiming of
transmitter and receiver .........................

Information bandwidth ...........................

5-10 W

10 _rad

10 _rad

45 inches

2
1.81 m

5 _rad

6 MHz
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5. Work that should be pursued under a follow-up program includes the develop-

ment of

a. An automatic solar tracking system, employing a four-quadrant

solar cell and servo controls.

b. An optical system for collimating and pointing the laser beam.

c. More efficient electro-optic modulator.

d. A solar power supply for modulator, coolant pump and electronics.

e. An RF-biased photoconductive detector.

f. A C W beacon.
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Appendix A

RELATIONSHIP BETWEEN PHOTODETECTOR

OUTPUT CURRENT AND INCIDENT

LIGHT POWER AND SIGNAL-TO-NOISE

RATIO OF AN OPTICAL RECEIVER

The rms noise current from a photodetector is

n '

where

I -- average diode current (amperes)

B = detector bandwidth (tIz)

e = charge on an electron (1.6 x 10 -19 coulomb).

(A-I)

Received signal power, received background noise power, and leakage current

contribute to the average current, I. The contribution due to received light

(either signal or background) is

I = r/pe,

where

r/ = quantum efficiency of photoemissive surface

p = average number of quanta received per second.

Since the energy per photon is

E = hy,

= Planck's constant (6.62 x 10 -34 joule-sec)

= frequency of received light (Hz)

where

h

V

then the average number of quanta received per second is

P

P= hv'

(A-2)

(A-3)

(A-4)
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where P is the average received power. Substituting Eq. A-4 into Eq. A-2 gives

_e

I = h'-_ P" (A-5)

For a given photodetector, the term 17e/by is a constant called the responsivity p.

Hence, the output current can be expressed as

I = p P (A-6)

This equation indicates clearly that a photodetector (e. g., a photodiode or multi-

plier phototube) is an ideal square law device t i.e., its output current is directly

proportional to its input power.

Fig. A-1 shows the spectral responsivity of photosensitive surfaces. From

this information, it is evident that S-1 surfaces have sensitivity of 0.3 x 10 -3

A/W at the 1.06-micrometer wavelength of the YAG laser.

I00

\
\

WAVELENGTH ._- NANOM ETE RS

Fig. A-1. Spectral sensitivity of photosensitive surfaces.
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Referring to the conceptual diagram of an optical receiver shown in Fig. A-2,

we see that the average signal power and the average background power reaching

the photodetector are Ps and Pb, respectively. Thus, according to Eq. A-6, the

resultant signal and background noise currents are

I = pP (A-7)
S S

and

Ib = P Pb (A-S)

The totalaverage output current from the photodetector is equal to the sum of these

two currents plus the dark current Id, viz.,

I = Id + Is + Ib , (A-9)

Substituting Eq. A-9 into Eq. A-1 yields the rms shot noise current

I =J_2e (Id+I +Ib) Bn s

where e is the charge on an electron and B is the bandwidth of the filter shown in

Fig. A-2.

Thus, shot noise power N s delivered by the photodetector to a load R_ is

N =I2G 2
s n R_ = 2 e (Id+ Is + Ib) BG21_ (A-10)

RECEIVER
LENS (OR COLLECTOR)

OPTICA L FILTER

VIDEO

FILTER
-" PH OTODETE_TOR

Fig. A-2. Conceptual diagram of an optical receiver.
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andthe signal power is

uponusing Eq. A-6.

photodetector.

S = I 2 G 2 p2 p2 G 2S R£ = S R£ (A-11)

In these equations, G is the internal gain (if any) of the

Other sources of noise in an optical receiver are the preamplifier (if any) and

the photodetector load resistor R£. The noise power introduced by the amplifier,

expressed in terms of equivalent thermal noise at its input port, is

N = (F-1) kTB
a

and the noise power introduced by the load resistor is

N = kTB
r

where

F

k

= noise factor of amplifier

= Boltzmarm's constant (1.38 x 10 -23 joule/°K)

T = temperature (_K)

(A-12)

(A-13)

Combining Eqs. A-10, A-11, A-12 and A-13, the signal-to-noise ratio at the

output of an optical receiver (before demodulation) is

S S

N N +N +N
S a r

2 2 G 2
P Ps R_

G 2
2 e B (DP s+DPb +Id) R_ + FkTB

(A-14)
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Appendix B

RELATIONSHIP BETWEEN TRANSMITTED

AND RECEIVED POWER IN AN

OPTICAL COMMUNICATION SYSTEM

After passing through focusing optics, the energy released from a laser

transmitter is radiated in a cone-shaped beam of angular width equal to s t radians.

For small angles (i.e., (_t < 10 degrees), this corresponds to a solid angle of

(_,_ steradians. Thus, if the total transmitted power is Pt' the power trans-

g_

_Z. As shown in Fig. B-l, an optical receivermitred per steradian is

will intercept some of this power over a solid angle of A /R 2 steradians, where

b

r

A is the area of the receiver collector and R is the transmission range. In addi-
r

tion, as this power passes through the atmosphere and receiving optics (including

optical filter), it will be attenuated by the factors T a and To, respectively. Hence,

the received signal power is given by

L SER _ | Dr

I tit _ _ RECEIVER

I _OLLECTOR

Fig. B-1. Geometry of transmission between laser

transmitter and optical receiver.
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Pt A
P = TT r

2 R2
s a o (?r/4)e_t

(B-Z)

If the receiver collector is circular with diameter Dr, then Eq. B-1 becomes

2

Pt (y/4) D
P =T T r

s a o (_t/4)(x2 R 2

(B-2)

or

D2p

P = T T r------it (S-3)

s a o (_:R 2

Solving for Pt here yields an expression for the transmitter power required for a

given received signal power in an optical communication system:

2R2
t

Pf- 2 Ps (B-4)
TT D

a o r
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' Appendix C

BACKGROUND NOISE

The major source of background noise for a spaceborne receiver pointed at

Earth is reflected sunlight. A reasonable approximation for the radiant emittance

of the sun is obtained by assuming that the sun radiates like a blackbody at a tem-

perature of 5600 ° K. From Planck's law, the radiant emittance of a blackbody

(radiant flux emitted per unit area) within a range of wavelength d k is

(C-1)

/ t Jl
where

C 1 2_C2h = (3. 74x 10 -12 2= cm -joule/s)

C 2 = hC/k = (1.438 cm-°K)

T = temperature (OK)

= wavelength (cm)

d_, = bandwidth of optical filter (cm).

For example, the radiant emittance within a 10-angstrom bandwidth centered at a

cm 2 ° 104 eter 2 °wavelength of i micrometer is L = 3.3 watts/ /A (or 3. 3 x watts/m /A).
2

The Sun, being a diffuse radiator having a radiance of L/IT watts/meter /steradian,

irradiates the Earth with

2 2 o
= L sin _watts/meter IA, (c-2)
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where _ is the angle subtended by the Sun (as seen from the Earth). Since the Sun
2 o

subtends 0. 0046 radian of arc, the irradiance, M, is about 0. 1 watt/meter /A.

The reflected sunlight that is detected is termed background noise. The Earth,
2 °

being a diffuse reflector, has a radiance of (_ M/?r )watts/meter /steradian/A,

where _ is the reflection coefficient (or reflectivity). Since the ground area "seen"

by the receiver is Ir _r 2 R2/4 (where y {rr2/4 is the receiver beamwidth in steradi-

arts and R is the slant range), the effective radiant emittance of the Earth is ( _ M/w)

(It _ 2/4) watts/meter 2/_. Hence, because the receiver collects radiation over
r

a surface A r, where A r is the collection area of the receiving antenna, the received

background power is

2
_T T A B Ma

a o r opt r
Pb 4 ' (C-3)

where T a and T o are the transmission of the atmosphere and target receiver optics,

respectively, and Bop t is the bandwidth of the optical filter which precedes the

photodetector.
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Appendix D

THRESHOLD DETECTION LEVEL

Communication range is limited by the threshold detection level of the

received signal. In particular, the threshold detection level marks a received

signal level below which output signal-to-noise ratio deteriorates rapidly. For

example, consider the threshold detection level of a system employing binary

modulation. Fig. D-1 illustrates the relationship between probability of error

(i. e., the probability of mistaking one binary state for another) and signal-to-noise
1

ratio. This relationship has been verified both theoretically and experimentally.

THRESHO

10-5
-14 -I0 -6 -2 *2 +6 +10

SIGNAL'TO- NOISE RATIO ( d B )

+14

Fig. D-1. Probability of error vs signal-to-noise ratio for a communication

system. Note that the threshold detection level occurs at about 9 dB.

1
J. G. Lawton, "Comparison of Binary Data Transmission Systems," Proc. Nat'l

Convention on Military Electronics, pp. 54-61, 1958.
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Note in this figure that the threshold detection level occurs at a signal-to-noise

ratio of about 9 dB. At 9 dB the probability of error is 0.01, whereas at 12 dB

(just a 3-dB increase in signal-to-noise ratio) the probability of error is only

0. 0001, a 100:1 reduction. From this result it is concluded that as long as the

received signal-to-noise ratio (at the input to the receiver demodulator) is

greater than 9 dB, the performance of a digital communication system will be

essentially error free. This means that the maximum communication range is

that range at which the signal-to-noise ratio has dropped to 9 dB (or, approximately,

a power ratio of 10:1 I. Stated another way: above this signal-to-noise power ratio

of 10, such a system provides a great improvement over the performance of narrow-

band systems (e. g., AM), while below this threshold, the wideband system per-

formance deteriorates rapidly; i.e., it does not perform as well as an analog AM

system.

Although shown specifically for a digital modulation technique, this threshold

effect is inherent in all wideband modulation schemes, including wideband FM

(see Appendix J). In the case of FM, the improvement over an AM system can be

understood easily by means of the rotating phasor diagram in Fig. D-2. In this

diagram, the quantities used for the calculation of signal-to-noise ratio for an FM

system are represented as phasors referenced to the phase angle _c t. Specifically,

the ratio generally calculated is that of mean signal power with noise absent to

mean noise power in the presence of an unmodulated carrier. The former is rep-

resei_ted in _ ^ _".... . ......... __*,= _s-,_*- by the p_o_- • cos _ t and the latter bv A cos (_c + 0¢)t,
C C n

where the subscript c defines the carrier and the subscript n defines noise, with

the noise being calculated at the frequency components _c + u_.

For the case of signal-to-noise ratios > 10 (the situation illustrated in the

diagram), then A < < A and the angle 8 in the diagram is given by
n c

A
n

8_-- sin _t
C

(D-l)
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RESULTANT SIGNAL PLUS_ _ IAn sin wt I

NOISE INTO LIMITER "_ It /

IAcCOS .¢ t 4- A n c_w

IAc cos ,,,ctI wc I
!
I
I

LOCUS OF MAGNITUDE (A L] OF t _

LIMITER OUTPUT: AL=A C FOR

IDEAL LIMITING
I

Fig. D-2. Carrier plus noise in an FM system for situation where noise

amplitude is much less than carrier amplitude (i. e. A < < A ).
' n C

Thus, the output of the FM limiter in this case is

A

AL cos (_ct+ e) =ALcos (_ct+ A'-n sin _)
c

(D-2)

The locus of the magnitude of this equation is indicated in Fig. D-2o Note from

this locus how the action of the limiter serves to "chop off' much of the effect

of the noise disturbance, limiting this disturbance to a very small variation in

phase e about the reference phase u_ t. Clearly, this is a great improvement
c

over the amplitude noise disturbances of AM.

Analytically, Eq. D-2 is exactly in the form of an FM signal which is narrow-

band, because A /A , the modulation index, is much less than 1. Thus, since a
n c

desired signal will be designed to produce wideband FM, the noise effect is re-

duced. In addition, as the signal deviation (equivalently, the FM bandwidth) is
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increased, the effect of the noise will become smaller and smaller. Thus, we

again have an improvement in performance over the AM system (a narrowband

system) as shown graphically above. (Note that although our analysis here is

for one frequency component _ only, superposition applies because narrowband

FM systems are linear. )

However, when A /A drops below 10, the phasor diagram above indicates
C n

that the phase variation 0 becomes larger and, therefore, the effect of the noise

becomes greater. Analytically speaking, Eq. D-2 tells us that with A /A no
n c

longer much less than 1, the noise equation becomes one of wideband FM; thus,

more noise comes through the limiter to the demodulator and the performance

decreases over that of a narrowband system such as AM. In the literature, 1

it is shown analytically and experimentally that this threshold improvement really

disappears rapidly below a signal-to-noise ratio of 9 dB.

D. Middleton, "On the Theoretical Signal-to-Noise Ratios in FM Receivers:

A Comparison with Amplitude Modulation," J. Appl. Phys., vol. 20, pp. 334-

351, April 1949.
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Appendix E

ATMOSPHERIC TRANSMISSION

The problem of describing what happens when information is carried via light

through Earth's atmosphere is not simple, for the atmosphere is an everchanging

heterogeneous medium, and it is difficult to represent even its major properties

by a mathematical expression. This circumstance dictates an empirical solution

based on a large amount of observed statistics.

The heterogeneous nature of the atmosphere is caused by the variety of materials

it contains, e. g., gas molecules (water vapor, carbon dioxide, ox_gen, ozone, etc. ),

sea salt, combustion nuclei, soot, dust, and so on. Because of w_nd and atmospheric

currents, some of these particles are found at any given location and they act in two

ways to attenuate radiation incident upon them: (1) by absorption and (2) by scatter-

ing. In either case, if a beam of light of initial intensity I traverses a distance xo

through an absorbing or scattering medium, its intensity is reduced according to a

law of the form

I(x) = I e -ax (E-l)
0

where a is the attenuation coefficient (absorption and/or scattering, depending on
o

the mechanism involved).

For Earth's atmosphere, _ is the sum of four terms: (1) the attenuation co-

efficient describing air molecule scattering, called the Rayleigh (or molecular)

scattering coefficient, (2) the attenuation coefficient describing scattering caused

by spherical hygroscopic particles (haze and fog), called Mie (or large particle)

scattering, (3) the attenuation coefficient describing scattering caused by large non-

hygroscopic particles such as soot, and (4) the attenuation coefficient describing
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band absorption by gas molecules. Not all these coefficients are significant for the

application intended. For example, absorption can take place only where the con-

stituents of the transmission medium have absorption bands. Compared to the

scattering coefficients, absorption by atmospheric gas molecules is insignificant
1

in the visible and near infrared spectrum and may be neglected. Thus, the major

source of atmospheric attenuation for the application at hand (i. e., communication

at optical frequencies) is scattering. Values of the scattering coefficient at sea

level (total including the sum of the three types described above) are given in Table E-1
2

for various meteorological conditions.

Table E-1. SCATTERING COEFFICIENTS AT SEA LEVEL FOR

VARIOUS METEOROLOGICAL CONDITIONS

Scattering Coefficient,
O

-1)

80

2O

8

4

2

1

0.4

0.2

0.08

0.014

Meteorological Description

Dense fog

Thick fog

Moderate fog

Light fog

Thin fog

Haze

Light haze

Clear

Very clear

Exceptionally clear (pure air)

lo

o

Handbook of Geophysics, United States Air Force, pp. 16-20, The Macmillan Co.,

New York, 1960.

J.A. Curcio and K.A. Durbin, "Atmospheric Transmission in the Visible Region,"

ASTIA Document 227 798, pp. 52-53, October 6, 1959.
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Now from Eq. E-l, it follows that the transmission of a light beam through

the atmosphere at sea level is given by

-_ R
T _ I(R)_ e o (E-2)

a Io

where T =
a

o

atmospheric transmission

atmospheric scattering coefficient at sea level (kin -1)

R = transmission range (km)

I = intensity of light beam at its source (watts)
O

I(R) = intensity of light beam at range R (watts)

Using Table E-1 and Eq. E-2, the effect of atmospheric attenuation on light

transmission at sea level was calculated and plotted in Fig. E-1. From this plot

it is observed, for example, that on a very clear day, a transmitted light beam is

10.3 I0 -2 iO-I I I0

RANGE (STATUTE MILES)

Fig. E-1. Atmospheric transmission vs range as a function of

scattering coefficient at sea level.
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attenuatedabout 75 per cent over adistance of 10miles at sea level. Using Table

E-1 and Fig. E-I, a plot of atmospheric transmission for three practically useful

meteorological conditions (haze, clear, very clear) is presented in Fig. E-2. This

plot illustrates clearly, for example, that on a clear day, T _ 0. 2, 0.1, and 0. 04
a

at sea level for ranges of 5, 7, and 10 miles, respectively.

For a space-oriented system, the sea level atmospheric transmission informa-

tion detailed above must be modified to describe transmission through the atmosphere

in a vertical or oblique direction with respect to Earth's surface. Since _ is a

function of altitude (i. e., height above Earth's surface), then from Eq. E-l, if a

beam of light is transmitted perpendicularly to the surface of Earth, the intensity

at height h is

I(h) = I e -y (E-3)
O

I

_u o._

o.om
0 i 2 3 4 5 6 1' • • I0 II 12 13 I4 15 16 !7 i• !9 20

RANGE (MILES)

Fig. E-2. Atmospheric attenuation vs range at sea level as a

function of meteorological condition.
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1
where

h

= f ff(h) dhY

O

It follows that the atmospheric transmission through the vertical atmosphere is

T _ I(h) _ e-y

av I°

To a good approximation;

altitude is

2
the relation between the scattering coefficient and

=h/H
o'(h) = o' e

O

(E -4)

(E-5)

(E-6)

where (h) = scattering coefficient at altitude h (km -I)

a = scattering coefficient at sea level (km -1)
0

h = altitude above EarthVs surface (km)

H = altitude scale factor known as "scale height"

(I-I _ 8 km for Rayleigh scattering and 1.2 km for Mie

scattering)

Substituting Eq. E-6 into Eq. E-4 gives

-h/H
y= a H(l-e )

o

Substitutingthis expression for optical thickness into Eq. E-3 gives

Tav = exp [ao H(e-h/H-1)]

(E-7)

{E-S)

°

,

Since the factor y is related to the height h of atmosphere under consideration,

it is commonly referred to as the "optical thickness. "

Handbook of Geophysics, United States Air Force, pp. 16-20, The Macmillan Co.,

New York, 1960.
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For oblique paths, the transmittance is

Ta = exp [MaoH (e-h/H-I)] (E-9)

where M is a factor known as the "optical air mass". For elevation angles greater

than 30 degrees, meteorological tables 1 show that the optical air mass is

1
M _ (E-10)

sin _/

where _/ is the elevation angle of the light source.

As noted above, in the visible and near infrared regions of the electromagnetic

wave spectrum, atmospheric attenuation is caused mainly by scattering. It is also

true 2 that most of this scattering attenuation is a result of Mie scattering (i. e.,

scattering by water vapor, haze, and smog). Thus, with the value of H equal to
-1

1.2 km and using _ = 0. 2 km (clear-day meteorological conditions), Eq. E-9
O

becomes

T =eXPa 10"24M(e-h/l'2-1)l (E-f1)

This equation is plotted in Fig. E-3 indicating the attenuation to be expected as a

function of altitude h and elevation angle _.

Note from Fig. E-3 that for _ = 90 degrees (transmitting straight up through

the atmosphere) attenuation of the light beam is ..._1., -hn,,t 20 her cent. Of course,I.DXLAj _ _- A

this represents only an average value over the frequency range of interest (visible

.

*

R. Penndorf, "Tables of the Refractive Index for Standard Air and the Rayleigh

Scattering Coefficient for the Spectral Region between 0.2 and 20.0 Microns

and Their Application to Atmospheric Optics, " Jour. of the Optical Society of

America, vol. 47, p. 176, February 1957.

W. J. Hannan et al., "Feasibility of Techniques for a Doppler Optical Navigator,"

Technical Documentary Report No. AL TDR 64-209, Contract No. AF 33(657)-

11458, pp. 8-10, September 1964.
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andnear infrared). A more accurate plot for the cases _/ = 30 and 90 degrees is

given in Fig. E-4 where atmospheric transmission is given as a function of total

scattering 1. Note in this plot that for _ = 90 degrees, T varies between 62 and
a

93 per cent,depending on the wavelength of the laser source.

1. Ibid, p. 12.
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Fig. E-3. Atmospheric transmission as a function of altitude

h and elevation angle 7.
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Appendix F

SOLAR CELL ARRAY WEIGHT

VS USEFUL OUTPUT POWER

The process of converting solar power to electrical power is illustrated in

Fig. F-1. Incident solar power P is converted to low voltage direct current
s

electric power Pdc by means of sqlar cells, This power, in turn, is converted to

more useful, higher voltage direct current power 1_ by means of an electronic
o

DC-to-DC converter.

The weight of the solar cell array can be specified in terms of:

1) Pi, the solar power incident on a square meter of area A, equivalent to

the area of the solar cell array normal to the axis between the Sun and

the array.

2) 771, the efficiency by which solar power is converted to electric power by

the solar cell array.

3) 72, the efficiency by which electric power from the solar cell array is

converted to useful electric power (rl2 = 1 if this converter is not used,

as would be the case if low voltage power is sufficient for the application

intended).

4) Po, the required power output at the end of the conversion process.

5) Ws, the weight per unit area of the solar cell array.

SOLAR

POWER
=PiA

SOLAR CELL ARRAY

AREA _AAA
A

EFFICIENCY : _1
Pdc

DC - DC

CONVERTER

EFFICIENCY_ "/2

USEFUL
POWER

Po

Fig. F-1. Solar to electrical power conversion.
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Thus, the solar power Ps collected by the solar cell array is

P = P.A
S l

(F-I)

and the DC power Pde available at the output of the array is

Pdc = _71Ps = NIP'A, (F-2)

The output power P is, therefore,
O

P = _ _7 P.Ao 2 1 z (F-3)

This equation can now be inverted to yield the area of the solar cell array

necessary to furnish the desired power output P . Thus,
0

P
o

.4.= p. (F-4)
_71 ??2 I

Hence, the weight w of a solar cell array for a given power output P is
a o

wP
S O

w = w A - (F-5)
a s _71 _72P.1

where w is the weight per unit area of *"_w,_ov,._'.... .._..u a,.,_.y.._. When......... the DC-to-DC
S

converter weight w e is known, the total weight wt of the power conversion system

can be found from

wP
s O

wt = w +
c 771 7/2 P.I
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Equation F-5 can be usedto obtain graphs relating the weight of a solar cell
1,2

array to the power it can supply. Typical parameter values for this relationship

are

= 0.14
?71

= 0.70772

w = lto31b/ft 2
s

P. = 1322 W/m 2 at 93 x 106 mi range from Sun (average range of Earth from
1

Sun)

P. = 555 W/m 2 at 140 x 106 mi range from Sun (average range of Mars from
1

Sun)

Substituting these parameters in Eq. F-5 yields

and

wP
S O

w = = 0.0078 w P (F-7)
a (0.14)(0.70)(1322) s o

wP
S O

w = = 0.0184 w P (F-8)
a (0.14)(0.70)(555) s o

Equation F-7 relates solar array weight to required electric power output for near-

Earth operation (e. g., Earth satellite operation), and Eq. F-8 gives similar Jar.r-

marion for operation near Mars (e. g., manned space probe). These equations are

plotted in Figs. F-2 and F-3, respectively.

.

o

P. A. Iles, "The Present State of Silicon Solar Cells," p. 13, IRE Trans.

Military Electronics, vol. MIL-6, no. 1, January 1962.

N. W. Snyder, "Solar-Cell Power Systems for Space Vehicles," p. 89, IRE

Trans. Military Electronics, vol. MIL-6, no. 1, January 1962.
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Fig. F-2. Solar cell array weight vs required electric power

output for operation near Earth.

1200

_1000

800

>-

_00
<

400

200

0

-- PARAMETER VALUES_ _1 =0,14 J ws:3 LB/FT c

--_ I i I I I I I I

200 400 600 800 I000 1200 1400 1600 1800 2000

REQUIRED ELECTRIC POWER OUTPUT (WATTS)
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Appendix G

OPTIMIZATION OF CRYSTAL SIZE FOR A CYLINDRICAL LASER

IN A SOLAR-PUMPED LASER SYSTEM

It is possible to define an optimum laser system as one which furnishes the

required power output while operating at maximum efficiency. It is the purpose

of this analysis to demonstrate that there exists an optimum size for the laser

crystal used and to discuss the parameters involved in the choice of the crystal

for a specified system.

The problem of optimizing a system with respect to laser crystal size has

two aspects:

1) Coupling of solar energy to the laser crystal.

2) Design of an optical system which functions at maximum efficiency.

The first of these considerations can be examined qualitatively rather easily.

It does not lend itself to any simple quantitative analysis. Consider the elements

of an end-pumped laser system shown in Fig. G-1.

1)

2)

3)

where

i

The solar image must be focused on the end of the laser crystal. There are

three possible cases for a crystal with perfectly reflecting side walls (the only type

to be considered):

i >2r 0

i < 2r 0

i = 2r 0

= size of solar image

r 0 = laser crystal radius.
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9

COLLECTOR

MIRROR

FOCUS OF COLLECTOR

_X_LASER PLACED HERE

D = COLLECTOR DIAMETER

D 2
COLLECTION AREA = "¥

i = SOLAR IMAGE SIZE

()
LASER CRYSTAL

(NO SCALE)

Fig. G-1. End-pumped laser system.

For case 1 it is evident that all available solar energy cannot be coupled to

the laser crystal. Since loss of part of the solar image corresponds to a con-

siderable loss of available pump energy, it follows that coupling of this type is

inefficient and cannot be considered an optimum arrangement.

For case 2 the entire image falls on the crystal, but the pumping here is highly

nonuniform. There are areas of the crystal face strongly pumped, while other

appreciable areas are not pumped at all. Regions which are not pumped cannot

contribute to the power output of the laser and may add losses. Also, it is pos-

sible that thermal problems might arise if an extremely high energy density is

present at only some portion of the area of the crystal end. This may result in
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the presence of a high-temperature region near the center of the crystal end which

might prohibit laser action in that region or actual crystal fracture due to non-

uniform crystal thermal expansion. It may also result in damage to the crystal

end reflectors. Since none of the above effects can be tolerated, it must be con-

cluded that case 2 is not an optimum coupling arrangement.

For case 3 the entire end of the crystal is pumped. Thus, inefficiencies

caused by loss of part of the solar image, as in case 1, cannot be present, and the

crystal can accept the maximum amount of radiation of which it is naturally capable.

(The limit is again imposed by thermal considerations. )

It may be concluded that optimum pumping efficiency is achieved when the

crystal diameter equals the size of the solar image.

Having defined an optimum energy coupling technique, it is now possible to

design the energy collector which utilizes this technique to furnish a desired

amount of power, Pout"

It can be shown that the output power of the cylindrical laser 1 is given by2:

Pout = Pfc (t_- 1) (G-l)

where

3h 3 2
4y V r 0 qAv

Pfc = 2
C

= Threshold power

Pump Power

Pfc

= loss per pass

1. A four-level, uniformly pumped laser system is being considered.

2. A. Yariv, J.P. Gordon, ,,The Laser,,, l>roc. IEEE, vol. 51, no. I, Jan. 1963.
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0

Av = linewidth

V = laser frequency

c = velocity of light in laser crystal.

Eq. G-1 can be written:

1_ _-- p -
out

where P = pumping power.

4 ?r3h y 3ol Ay 2
r 0 (G-2)

The power P enters the crystal through the end face being pumped.

end there exists an areal power density_:_defined as:

2
?rr 0

At that

(C_3)

or

where

2 ,)P = _ro (_-(_ (G-4)

P
= areal density of pump power

Yr 0

= areal density of power unsuitable for pumping (e. g., portions

of solar spectrum not in laser pump bands).

It will be assumed that there exists a limiting areal power density, (_max' on the

crystal end beyond which thermal effects in the crystal degrade performance as

previously described. It will be further assumed that the laser is operated under

the condition_)_ (_max" This implies operation well above threshold at a point

where maximum possible output from the laser is being achieved.

159



Under the condition of operation at _=(_max' Eq. G-4 becomes

Pmsx = _rro2 (_m_x-%ax). (G-5)

This equation gives the pump power available in a crystal of radius r 0 when the

maximum areal power density at the crystal end is specified.

Use of Eq. G-2 now allows specification of the radius r 0 when a desired power

output is required. Substitution of Eq. G-5 into Eq. G-2 gives:

Pout = _r02 _max-_ma_ - 4_ 3h v3c_2 A V r02 (G-6)

C

Solving for r0,

r 0 = 1fl/2
Pout

r

-
47t2hv3_ Av

c2t.

(G-7)

This is the optimum value of r 0 since the laser furnishes the required power

Pout and operates under the highest pump level possible.

To this point no attention was given to the choice of a length dimension.

G-2 above is suitable only for obtaining r0. The choice of a length is made

according to the following criteria:

1)

2)

Eq.

The power absorbed, and hence output power, depends on the length. A

length should be chosen such that an appreciable amount of available pump

power is absorbed.

Scattering losses increase with length. Thus the crystal must not be so

long that losses offset the effects of greater absorption with increasing

length.
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Experiments have been performed with crystals (CaF2:DY 2+, YAG:Nd 3+, YAG:Nd 3+

-Cr 3+) for which length _ 20 - 30 r 0. These crystals had low thresholds and

operated efficiently at the pump levels available.

After the optimum dimensions have been determined for the crystal, knowledge

of the magnitude of the solar constant completely defines the energy collection

system. The solar constant is given by

P + ?rr02_ tmax Power Collected
E = --

A Collector Area (G-8)

where A = collector area. The condition I that 2r 0 equals the size of the solar

image implies-

f5

ro = 7 (G-9a)

or

2r 0
f -

6 (G-9b)

where

f = focal length of collector

5 = angle of solar subtense at laser system location.

The collector area is found from Eq. G-8:

2(_1
P + fro max

A = E
(G-10a)

or

trr0 max (G- 10b)

1This condition should be imposed at the maximum operating distance corresponding

to 5 = 5 min" A constant power output will then be obtained for all values 5 > 5 min.

This follows since P = [(Ac) / (y/4) (fS) 2] is constant. _ and 52 vary inversely

as the square of the distance from the Sun.
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The collector diameter is:

= 2r 0 • E

(6-11)

The "F-number" of the optical system is then found as:.

F f 2r0/
D - 6"/ 2r0 ¢

F=_

(G-12)

Consideration should now be given to the determination of the as yet unspecified

parameter,_ma x. It was assumed above that there exists a maximum temperature

above which local heating effects seriously diminish efficient laser performance.

It was assumed that specification of a maximum temperature, Tmax, would place

an upper bound on _since the crystal temperature, T(r, Z), is a function of_.

It remains to be shown that this is so and thatOma x can be determined from

knowledge of Tma x.

Consider the case of a laser of end area A pumped uniformly at an end with

power density_. The power absorbed by this crystal is given by:

or

Pabs = A(_')Bf e-B

0

Z
dZ

(G-13)

I Pabs ] = [ A(_-(e-_- i)
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where

= absorption coefficient

= crystal length.

Under the assumption that most of the energy absorbed is transformed into

thermal energy, and not useful output, it follows that the heat production rate Ao

per unit time per unit volume (constant due to small absorption in length involved}

produced by the incident radiation is given by:

(G-14)

It is possible to determine the temperature distribution in the crystal in terms

of A o and conversely. Fig. G-2 illustrates a case where a solution can be obtained.

The steady-state diffusion equation for the case where there exists a source

function A o is:

b2T 1 5 T 52T Ao

r 5r 2 K
5r 5Z

(G-15)

where K is the thermal conductivity of the material. ++'-'*"wit,,*""_,,,_bovmda_T r nnditions......

T = 0
r>r 0

Z< 0, Z>£
(G- 16)

163



_ro_

/
¢,

z=_

=o

INCIDENT RADIATION

_Y

Fig.

this equation has the solution:

G-2. Conditions on uniformly end-pumped laser.

T(r, Z) = A 0 KY 3 sin (2n+ 1) -_Z 1 (G-17)

or

T(r, Z) = A • (r, Z)
o

(G-18)

In Eq. G-17, I 0 is the modified Bessel function of the first kind of order zero.
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For the case considered, Eq. G-17 predicts a maximum temperature at the

crystal center, as would be expected. The qualitative graphs of T vs r and Z

shown in Fig. G-3 illustrate this.

T

f

Fig. G-3. T vs r and Z for cylindrical laser uniformly end-pumped.

Now Eq. G-18 shows that if the maximum allowable value of T is specified,

the maximum allowable value of Ao can be found from

A -
o o(0 )

(G-19)

since Tma x must occur at r = 0, Z = 4/2. Now since Aomax is known, Eq. G-14

furnishes the corresponding maximum areal power density which can pass through

the crystal end:

_A
O

(_ _ max (G-20)

max l(e-/3£_ l)l
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The abovesolution is only an approximation to the problem of determining

(_max for a practical laser. It must be modified if thermal conductivities are

temperature dependent and if the crystal boundaries are not at T = 0, or if pump-

ing or crystal characteristics rule out the approximation Ao = constant. It does,

however, demonstrate a method for determining a value for _max.

Information regarding the value of Tmax must come from

1) strength of the cavity reflectors

2) strength of the crystal with regard to thermal expansion

3} behavior of laser action with temperature.

The first and second of these can be considered only for particular crystals

and will not be discussed further. The third may be discussed for the general case

in a limited sense to discover the general properties of laser output power as a

function of temperature.

Consider the laser system shown in Fig. G-4 below. The aim of this discus-

sion is to obtain an approximation for the change in pump power required to main-

tain a constant power output as the temperature of the laser (assumed uniform at

least locally) changes from a value T to T t. The case T t > T is of particular interest

since, to maintain a desired output level, the input power must be increased. For

the solar-pumped system being considered, this places a limit on the maximum

allowable value of the laser temperature locally or in the entire volume since the

amount of input power is determined by the geometry and will be constant. This

maximum temperature is Tma x used above.

According to Eq. G- 1,

Pout = Pfc T ( _ - 1}
(G-21}

at a temperature T.
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G-4. Four-level laser system.

Pout = P_cT' (_'- 1).
(G-22)

If power output is to remain constant after a change in temperature,

must be satisfied. Since

'- 1 Pfc T

_- 1 PfcT '
(G-23)

41r2huSv(_Au 4y2huSvqAu'
PfcT = and

c2£ PfcT ' = 2 '
c

(G-24)
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Eq. G-23 can be written

_t-1 AP

_-i AI,'7 " (G-25)

This implies

Ap
_' = 1+ _"_ (_-i).

(G-26)

Since

PinT and _ ' PinT '

Pfc T Pfc T '
(G-27)

this implies

PinT' = PinT + PfcT' - _ "
(G-28)

The change in input power required to maintain a constant output power when the

linewidth changes is

m = PinT - PinT PfcT' _]_ " (G-29)

If temperature increases appreciably, power must also be supplied to excite more

atoms into the upper state to maintain the necessary population difference between

the laser levels, due to the fact that the lower-level population is not negligible.

The population of this state is given by:

-E2/kT

n 2 = n0e (G-30)
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where

no = total number of active atoms in the crystal.

To excite this number of atoms to the upper laser level at temperature T l , a

power

P
h p 14 -E_/kT

- t t n0e
S (G.-31)

is required (where t s' = lifetime of upper laser level at temperature T ').

power P must be added to APin in Eq. G-29:

This

_E2/k T '

(1 Av) hVl4 n0 eAP.m = PfcT' - _-'_t + -----'Yts • (G-32)

From Eq. G-32,

APin ( _u) 1 hY14 n0e-E2/kT'+ (G--33)

But

An' hy
C

P_cT ' = t t
S

14

where An c = population difference at temperature T for power output Pout and

Pfc T , -- AV _'AV PfcT" When this information is used in Eq. G-33, it follows

that

---= i+ -i

PfcT _---'_J "
(G-34)
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Thus the pump power change required as T -_ T t to maintain constant output power

is

_P. : Km PfcT (G-35)

where

AI_ e
K = no _E2/kT t )l+_---_ce , - i .

IfT

graph in Fig. G-5 shows K vs E2/kT t with AV t/Av as a parar_eter.

values for n O and An t c have been assumed:

n o _ 1018

An c _ 1016

t > T, Ay t > Ay and APin represents an increase in power input. The

Typical

For example, consider YAG. At T = 300°K, YAG is an ideal four-level laser since

E2/kT = 9.6. If temperature is increased to T t = 400OK, E2/kT t = 5.8. Thus,

even if AV t = Ay, K = 0.3, and thus input power must increase by 0.3 Pfc T to

maintain a constant output for the crystal with n O = 1018 atoms and An c = 1016

atoms. This indicates that, if this laser were solar pumped and if a temperature

of 400°K could exist in the crystal, a maximum power output no greater than

P - 1.3 Pfc could be obtained, where P is the pump power. At T = 300°K, the same

laser could furnish a maximum output power = P - Pfc" If the power output re-

quired were P - Pfc, this particular laser could not furnish it if the crystal tem-

perature were greater than 300°K. In this case, the system parameter Tma x

would be specified as 300°K.
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Appendix H

DRIVE CURRENT REQUIRED FOR MAGNETIC MODULATION

Laser action in CaF2:Dy2+ occurs between two triply degenerate states

5I 7 -_ 5I 8. In a magnetic field, the degeneracy of the states is removed, and each

of these levels splits into three separate levels as shown in Fig. H-1. Also shown

in Fig. H-1 are the allowed magnetic dipole transitions among the split levels,

which correspond to the laser output, and the gyromagnetic ratios for the upper

and lower states.

Use may be made of the normal Zeeman effect splittings to accomplish modu-

lation of the laser output. Two approaches may be taken:

1) Frequency modulation of the center of the fluorescent line using the Zee-

man splitting caused by application of a uniform field. (Amplitude modu-

lation results because a narrow-band Fabry-Perot cavity is used. )

2} Broadening of the effective width of the fluorescent line by using an in-

homogeneous field to shift the fluorescent line in varying amounts through-

out the crystal.

the laser crystal can be varied in a controllable fashion.

fine a gain coefficient as.

Modulation can be accomplished if the power in the wave propagating through

Yariv and Gordon 1 de-

(H-I)

where E w is the energy of the wave propagating in the laser, and L is the path

length over which the wave travels. Energy added to the wave must come from

energy stored in the upper laser level, so that, if loss mechanisms are neglected,

the change in the wave energy, dE w , must equal the change in the energy of this

upper state, dEu:

1. A. Yariv and J.P. Gordon, "The Laser," Proc. IEEE, 51, 4, Jan. 1963.
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Zeeman splitting of levels 17
and allowed laser transitions:

dew = dEu

and 5I 8 and CaF 2

(H-2)

Inserting this in Eq. H-1 and dividing by dt, we get

dEu d£

= YEw d--t'" (H-3)

Loss mechanisms such as scattering and fluorescence, which are linear, can be

taken into account by writing the rate of energy loss from the wave as

dE£ d_ (H-4)
P£ = _ = 6E w-_-,

where 5 is the loss coefficient. The rate of energy increase of the wave as a re-

sult of increases in energy from the upper laser level energy and decreases due

to the loss mechanisms, is given by

dew dEu dE_

d--t-- = dt dt (S-5)
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The efficiency _ of the total process may be defined as the ratio of the power ad-

dition to the wave to the power loss of the upper laser state:

dEw/dEu_1 = _ _-_ - Pw/Pu (H-6)

Using Eqs. H-3, H-4, and H-5, the efficiency may be expressed as

6

rl = 1 _' (H-7)

The gain coefficient ? is given by

k2 (n3 - n2) L_y

(H-8)

where:

n 3 =

n 2 =

k =

T =

12e =

AV=

population of upper laser state

population of lower laser state

laser wavelength

lifetime of upper laser state

center frequency of fluorescent line

fluorescent linewidth

v = frequency at which gain is calculated.

If we let

K II. I

)2

161r2
(H-9)

and

A_ff =
AV

(H-10)
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then Eq. H-8 becomes

KT (n3 - n2)

_' = AYef f (H-11)

Substituting Eq. H-11 into Eq. H-7 allows the efficiency to be expressed as

5 AVef f

_7 = 1- K(n3-n2)1" (H-12)

Variation of this efficiency corresponds to the modulation process. Magnetic modu-

lation by means of the normal Zeeman effect results in varying the quantity A Veff,

which, as indicated by Eq. H-10, varies the frequency and varies the power output.

as:

The Hamiltonian for a state exhibiting the normal Zeeman effect can be written

whe re:

_on

g

H

L

n

It follows that

where

= _on - g/3H • L

= energy terms independent of magnetic field

= gyromagnetic ratio

= Bohr magneton (9.3 x 10 -21 erg/gauss)

= magnetic field intensity

= angular momentum of state n

= a subscript for numbering the state.

_n = _on - g/3HMLM,

MLM = H. L [-_-]" H ' H = .

For the transitions of interest in CaF2:Dy2+,

(H-13)

(H-14)
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AM32 = ML3 - ML2 = ±1. (H-15)

Subscripts 2 and 3 refer to the states 5I 8 and 517, respectively. When a CaF2:DY 2+

laser is operated while subjected to an external magnetic field parallel to the (100)

direction, transitions (5I 7 -, 518) for which _M32 = +1 occur simultaneously with

equal probability. As a result, there are shifts of the center frequency of the

fluorescent line above and below the laser frequency which occurs in the absence

of the field.

The energy change as a result of a laser transition expressed in terms of the

difference between the proper Hamiltonian operators is:

_{3- _2 = (_03 - _{02) -g flH AM32,

ifthe values of g are the same for the initialand final states.

expressible as a frequency difference in the form

(H-16)

The second term is

AV' = gflH A M32 (H-17)
H h

where h is Planck's constant. Since A M32 assumes the values +1, the total

effective frequency difference between the two shifted (fluorescent) line components

is:

which is expressible as:

2g_H
AU' - (H-18)

H h

geff _ H
A V = (H-18A)

H h

where geff represents an effective "g" for the laser transitions. This "geff" will

be denoted by "g" from this point and is equal to approximately 9.6.

For the case of modulation by a homogeneous field, the field has the effect of

shifting the center frequency of the fluorescent line, by the amount given by Eq.

H-18. Thus, assuming that the operating frequency u of the laser (i. e., the
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cavity resonance) is set at v c, the center of the line, it is seen that Eq. H-10

gives AYef f (in the absence of a field) as:

AV

AVeff - 4 ' (H-19)

while after the field is applied,

AYeff = Av (H-20)

Thus AVef f is seen to be a quadratic function of H, as is also the efficiency.

In the case where an inhomogeneous field is applied across the crystal, the

fluorescent linewidth is effectively broadened by an amount

g_AH.
h

where AH is the variation of H across the crystal.

frequency v is at Vc' the quantity AVef f is given by

_ gflAH
AVeff AV +

4 4h "

(H-21)

Assuming that the operating

(H-22)

In this case, the quantity AVef f, and also the efficiency, is seen to be a linear

function of A H.

The process of modulation can now be considered. Consider a laser operating

while not under the influence of a magnetic field. The ......ml_u,_,_^'_ for th__........l_,_er is

given by: 1

4 _2h 3 V AYeff (H-23)

Pth = 3 t
C

P

1. A. Yariv and J.P. Gordon, "The Laser", Proc. IEEE, Jan. 1963, Vol. 51,

No. 1, p. 9.
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If the same laser is operated while in an inhomogeneousmagnetic field, the ex-

pression for threshold becomes:

' 4Y2 hy3 V _yef f
Pth = (H-24)

c3t
P

I

Since AU elf > Aeff' it is evident that the effect of the magnetic field is to raise

the threshold for laser operation. If Ay elf is sufficiently large, the threshold

can be made equal to or greater than the operating input power level. When this

condition is reached, laser action ceases. This corresponds to the point at which

100 per cent modulation is achieved.

The ratio of the threshold with field to the threshold without field is given by:

• #

Pth AV eft

P-_= _ Vef f
(H-25)

Now if this ratio is equal to the pump ratio (pump power/threshold pump power),

the condition of 100 per cent modulation is obtained since at this point the available

pump power is less than or equal to the threshold power for the laser operated in

the magnetic field. Thus, for 100 per cent modulation:

= _ (H-26)

The statement of this condition allows the required inhomogeneous field difference

AH for 100 per cent modulation to be related to the operating pump power level.

From Eq. H-22 it is evident that

(H-27)
AYeff - 4

AYeff = _eff + (H-28)
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Thus

g_AH (H-29)
= 1 + 4hAYef f "

We can now determine the drive current through a modulation coil required to

produce 100 per cent modulation. The field produced at the center of a short sole-

noid is given by 1

H = LI x 104 gauss, (H-30)
kNyr 2

where

k

L =

N =

r --

0.53 (finite solenoid compensation factor)

coil inductance (henrys)

number of turns

radius of coil (meters).

Combining Eqs. H-30 and H-31, we find that the current required for 100 per cent

modulation is

4ykNr2h Aveff (_-1)

I = Lg_ x 10 -4 amperes. (H-31)

1. W.B. Boast, "Principles of Electric and Magnetic Fields," Harper and

Brothers, N.Y., 1948.
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Appendix I

DRIVE POWER FOR MAGNETIC MODULATION

A. PULSE MODULATION

According to the results given in Sec. IV. D ('see Fig. 26), the peak current

through a 6-/_H coil for 100 per cent modulation is one ampere. Thus, the

question to be answered here is "How much power is required to send 1-A pulses

through a 6-/_ H coil at the pulse repetition rate demanded by the quantity of

information to be transmitted?" The answer to this question is provided by the

following analysis.

Assuming both the coefficient of coupling between L and L' and the magnitude

of C in Fig. I-1 to be negligible, and letting r represent the total resistance in

series with the power supply E, the left-b_a_d loop current I(p) is given by

or, in the time domain,

E/p
I(p) - r+pL

E -e-L t
i(t) = r

(I-1)

(I-2)

L
E --_

l

R R I

Fig. 1-1. Modulation circuit.
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after each closing of the switch S. In other words, i(t) is the response to a

modulating voltage step.

Denoting T as the pulse period and r as the pulse duration (i. e., duty

factor = r/T), the mean square loop current is

irms r2T

IT r T __

E 2 2L - "[, L
- _ + e ---e

r2T -_- 2r
2L+ ]
r (I-4)

If a long time constant is used (i. e.,
L
-- > > 2 v), Eq. I-4 reduces to
r

2 E2_

lrms r2T

= (_')2._.. (I-5)

^

where I is the peak drive current. On the other hand, if a short time constant

L
is used (i. e., -- < < _" ), Eq. I-4 again reduces to Eq. I-5. In other words, the

r

equation for input power required for magnetic modulation is independent of time-

constant magnitude. Sinee input power is

2
P.=i r

l rms

(_)2 T (I-6)
= r-_

we conclude that for minimum input power, the resistance should be as small as

possible.

Of course, the size of the resistance r (which includes the switch resistance)

is dictated by the available switching devices. For the purpose intended, semi-

conductor switches are used. Reasonable state-of-the-art values for series re-

sistance and pulse duration are one ohm and 50 nanoseconds, respectively.
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^ -8
SubstitutingI = 1A, r= l_and r = 5x10 sinto Eq. I-6, we obtain the re-

lationship between input power and pulse repetition rate, plotted in Fig. 28

(see Sec. IV. D). Since the maximum duty factor is v/T = 0.5, the maximum

input power is 0.5 watt and the maximum pulse repetition rate is 10 MHz, as

seen from Fig. 28,

B. ANALOG MODULATION

In the preceding analysis, the drive power required for magnetic modulation

was derived from the point of view of pulsing the magnetic field. This type

bInary modulation could be used for PCM (pulse code modulation), PFM (pulse

frequency modulation) or any other type of binary modulation. As a comparison,

consider now the power required for analog modulation with a video signal. In

particular, suppose the video signal has a triangular frequency spectrum, viz.,

E (w) = E(1-_-) 0 < _ < _c
c (I-7)

= 0 _>_C

where E is a constant and u_ is the modulation bandwidth. (This type spectral dis-
c

tribution is similar to that of a typical TV signal. ) In this case, the circuit of

Fig. I-1 becomes (with the magnitude of C and the coefficient of coupling between

L and L' negligible and r representing the total resistance in series with the

power supply, as before) that shown in Fig. I-2.

i(t)

E(w) sin _Jt

r

_N_

L

Fig. I-2. Approximate magnetic modulation circuit for analog modulation.

182



The modulation current i(t) is given by

E(_)
i(t) - sin wt (I-8)

where

_ _r
c L

(I-9)

Thus
2

-_- E (_)
2 = i(t) -

irms 2 L2 (_2+Wc 2)
(I-10)

The substitution of Eq. (I-7) into this last equation yields

2
irm s - 2L 2 (_2+_c2)

(1-11)

and therefore, the average power input to the modulation circuit at one frequency

is

2
P--(_)= i r =
% J rms

rE2 (l-_c) 2

(1-12)

Thus, the total average power input over the bandwidth u_ is
C

rE -

-- 1 [o_C_(_)d_ _.i _c (a 2) d_Ptotal = a)"_ , = J'_c" 2L 2 2+_ c

(1-13)

The indicated integration yields

Ptotal
= 0.154

rE 2

L2wc 2

(I-14)
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In order to achieve 100 per cent modulation at low frequencies, the drive

voltage must be

E = I(O)r (i-15)

Where I(O)is the modulation current needed for full modulation. Thus,

]5
total

O. 154 rI2(O)r2

L2wc 2 •

= 0.154 I2(O)WcL (I-16)

A plot of this equation for I(0) = 1 A and L = 6 D H is given in Fig. 29 (see

Sec. IV. D).

184



Appendix J

COMPARISON OF MODULATION METHODS

Assuming that the usual steps are taken to minimize the noise factor of the

receiver, then overall communication system performance depends primarily

on the type of modulation employed. The choice of modulation method depends

on a compromise among required transmitter power, available bandwidth, mini-

mum acceptable signal-to-noise ratio, and acceptable complexity of the modulation

and detection circuits. In the following discussion, several modulation techniques

suitable for transmitting TV signals are reviewed.

Modulation techniques which allow channel bandwidth to be traded for higher

signal-to-noise ratio of the detected signal are referred to as wideband modulation

techniques. These techniques are particularly advantageous for optical communica-

tion links because the spectral width of the unmodulated carrier is usually orders

of magnitude wider than the bandwidth of the modulation signals and because ex-

tremely wide channel bandwidths are available.

The tradeoff between channel capacity, C, channel bandwidth, Bc, and signal-

to-noise ratio, S/N, is given by Shannon's well known equation

C = Bc l°g2 (1 + S/-N (J-l)

This equation indicates that, theoretically, it is possible to code a signal prior to

transmission such that bandwidth is traded for signal-to-noise ratio. In fact, be-

cause of the logarithmic relationship, just a small increase in channel bandwidth

should improve the signal-to-noise ratio significantly. In existing RF communica-

tion links, channel bandwidth restrictions usually prohibit the use of wideband

modulation methods, but this restriction does not exist at optical frequencies.
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The tradeoff between B and S/N in Eq. J-1 is usually (but not always) ac-c

complished by converting the analog information into a digital signal prior to

transmission. By appropriate wideband modulation of the digital signal, the

signal-to-noise ratio remains practically constant out to the threshold detection

range. VCith narrowband analog modulation, on the other hand, the signal-to-

noise ratio decreases monotonically with increase in range. Therefore, it appears

advantageous to employ digital modulation techniques (or other wideband analog

modulation such as FM) for information transmission on an optical carrier

wave.

_hat price must be paid for the higher signal-to-noise ratio achieved by

wideband modulation? Obviously, additional channel bandwidth is one price, but

this is not the only price. All modulation methods that achieve higher signal-to-

noise ratio at the expense of wider channel bandwidth, regardless of whether they

employ analog modulation or digital modulation, are plagued with a threshold de-

tection level below which performance deteriorates rapidly. Therefore, an addi-

tional price that must be paid is a shorter threshold detection range.

As an example of this prevalent threshold effect in a communication system

employing wideband modulation, we considered in Appendix D the threshold detec-

tion level of systems employing binary modulation and frequency modulation.

From the results of Appendix D we were able to conclude that as long as the re-

ceived signal-to-noise ratio (at the input to the demodulator) is greater than 9 dB,

the performance of a digital communications system will be essentially error free.

This means, for example, that if a video signal, say a television signal, is trans-

mitted as binary coded data, the signal-to-noise ratio of the resultant picture will

remain at a constant level (determined by the quantizing noise of the coding process)

until the signal-to-noise ratio (at the input to the receiver) falls below 9 dB.
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Since noise power is directly proportional to bandwidth, it is clear that any

increase in channel bandwidth will result in a proportionate increase in noise

power. It follows, of course, that any modulation method that widens bandwidth

also shortens the threshold detection range. Despite the shorter threshold

detection range, the tradeoff still favors the use of wideband modulation methods

for applications where it is necessary to maintain the postdetection signal-to-

noise ratio above 10 dB (e. g., for TV applications).

To show the improvement offered by wideband modulation methods, conven-

tional analog and wideband modulation methods are compared below. (In order

to maintain realism, the comparison is based on systems having identical trans-

mitters and receivers, the only difference being the bandwidths needed to accom-

modate the different modulation schemes. )

As previously mentioned, the signal-to-noise ratio with wideband modulation

remains practically constant out to the range at which the threshold detection level

is reached and then drops to an unusable value. On the other hand, with narrow-

band modulation the signal-to-noise ratio drops monotonically as range is in-

creased. Comparing the performance of systems using these two modulation

methods, one finds that beyond the threshold detection level of a wideband system,

the signal-to-noise ratio of the narrowband system is much higher; however, for

television picture quality of practical interest (i. e., signal-to-noise ratio higher

than 15 dB), the signal-to-noise ratio available from the narrowband system is

aready below the acceptable level of 15 dB. In other words, narrowband systems

can provide longer range, but the quality of the received TV pictures at ranges

greater than the maximum range of a wideband system is not acceptable.

As a starting point for the comparison, the required signal-to-noise ratio

must be specified. Subjective tests have shown that a signal-to-quantizing noise

power ratio (S/N)q of about 30 dB will result in a picture which is subjectively
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noise free. That is, a TV picture produced with a 30-dB (S/N)q in a 5-MHz
bandwidth, and viewed at a "normal" distance of four times picture height, appears

essentially noise free.

In the narrowband-widebandcomparison to follow, the relative performances

of four different modulation methods will be compared, namely conventional pulse-

code modulation (PCM), delta modulation, narrowband analog amplitude modulation

CAM), and widebandanalogfrequency modulation (FM). The comparison is based

on achieving the signal-to-noise ratio neededto realize a noise-free picture

(namely, 30dB).

A. PULSE-CODE MODULATION

The channel bandwidth required for PCM is

where

Bc = Bvlog 2n (J-2)

B = bandwidth of television signalv

n = number of gray levels in reproduced picture

As an example, consider the case of a 5-MHz television signal transmitted with an

8-level gray scale (corresponding to a signal-to-noise ratio of about 30 dB as

specified above). Such transmission can be accomplished by sampling the video

signal at a 10 MHz rate (minimum) and transmitting each sample as a 3-bit code.

Thus, for the ideal case 1 the transmitted bit rate would be 30 x 106 bits/s,

1 The Nyquist sampling theorem indicates that it is theoretically possible to pre-

serve all the information in a signal by sampling it at twice its highest spectral

frequency. Moreover, if the ideal sampling signal is used (e. g., a sin x/x

function), the samples can be transmitted over an ideal channel (i. e., a channel

having flat amplitude response and linear phase response over the passband)

having a bandwidth which is one-half the sampling rate.
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which could be transmitted over a 15-MHz channel. In this case the channel

bandwidth wouldbe three times as wide as the video bandwidth in accordance

with Eq. J-2. In practice, however, ideal sampling signals and ideal channel

bandpasscharacteristics are not realized, and, consequently, the required

channel bandwidth is actually abouttwice as large as the ideal value, or 30 MHz.

This realistic value will be used for the comparison of PCM with other types of

modulation given later.

Onceconverted to a binary code, the video information canbe transmitted by

shifting the polarization of the optical carrier, by keying the optical carrier on and

off, or by any other form of binary modulation.

Because PCM allows only discrete levels to be transmitted, the system is

plagued by quantizing noise. Out to the threshold detection range, only this

quantizing noise is apparent in the reproduced picture. That is, as long as the

receiver SNRis abovethe threshold level of 9 dB, widebandmodulation gain is

realized and only quantizing noise is apparent in the reproduced picture. How-

ever, whenthe received SNRdrops below the 9-dB threshold level, the signal-

to-noise ratio (at the output of the receiver) drops rapidly to an unusable level.

The signal-to-quantizing noise is determined as follows. Assume that the

video signal is quantized into n levels, each level being separatedby E volts.

Since aU levels of the video signal from 0 to nE volts have equal probability of

occurrence, the mean-square quantizing error is

+E/2 E2
-2 1 2
e - E e de- 12

-E/2

(J-3)
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Since the peak signal amplitude is nE, (S/N)q is

__) = (nE) 2 2
q E---_I 2 = 12n

(J-4)

It follows that the number of gray levels corresponding to an (S/N)q

given by

(__) 230 dB = 10log = 10log 12 n

q

of 30 dB is

(J-5)

1

Solving for n we get n _ 8. In other words, an (S/N)q

picture having a gray scale containing 8 levels.

of 30 dB corresponds to a

It is important to note that quantizing noise is inherent with digital modulation;

increasing transmitter power or increasing receiver sensitivity will not reduce it.

It is also important to note that as long as the received signal-to-noise ratio at

the input to the decoder is above the threshold level of 9 dB, system performance

will be limited primarily by quantizing noise.

Because a PCM system can reproduce only discrete gray levels, the received

TV pictures suffer an effect known as "contour" distortion. One way to overcome

this effect is to add coded noise to the TV signal prior to PCM encoding. Removal

of the coded noise at the receiver effectively eliminates the contour distortion. Use

of noise coding and decoding circuits would, of course, make the system consider-

ably more complex.

The delta modulation method to be described next offers a much simpler way

to eliminate contour distortion. It not only surpresses contour distortion, but it

1 Actually, 10 log 12n 2 for n = 8, is equal to 28.8 dB.
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also provides picture quality equivalent to that obtained with PCM with lower trans-

mitter power and simpler coding circuits.

B. DELTA MODULATION

Delta modulation is fundamentally different from PCM in that the analog signal

is compared to a reconstructed video signal at each sample or bit time. The dif-

ference between the reconstructed video and the original analog signal is used to

generate the digital data. The basic delta modulation system is shown in Fig. J-1.

The pulse modulator generates either a positive or a negative pulse, the polarity

of the pulse being determined by the polarity of the difference between the input

signal and the integrated binary output signal. In this way, the video signal is

converted into a binary signal directly without using complex coding circuitry.

Simplicity is one of the salient features of this type modulator, but, as will be

shown, there are other attractive features.

VIDEO

INPUT

l CLOCK ] BINARY SIGNAL

,,,.,,s,,-. q: H,..o..,..s,l_.,
MODULATOR I '; O dt FILTER

( o ) CODING UNIT

( b ) DECODING UNIT

VIDEO
OUTPUT

Fig. J-1. Basic delta modulation system. The analog input signal is

compared to the integrated binary output signal and the

polarity of the binary output signal is switched in

accordance with signals from the clock.
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The signal-to-quantizing noise power ratio [i. e., (S/N)q] of a communication

system using delta modulation has been shown 1 to be

425

(S)q M2 381 ' _
= 4 2 2 16 4 4 2 (J-6)

1+_" 17 (I"'T2) 81 +_ 81

where

M = ratio of signal amplitude to one-half dynamic range

= fr/Bv

f = sampling frequencyr

B v = video bandwidth

1.1' 1"2 = integrator time constants

_i = Bv1"1

82 = n, 1"2

•y = _2/_1

In a given system 81, 82, _', Bv, r I and r 2 are constants. As a result, Eq.

J-6 states that the signal-to-noise power ratio is proportional to _ 5 or, equiva-

lently, fr 5. This means that for each octave increase of sampling frequency, the

signal-to-noise power ratio will increase by 15 dB.

Balder 2 has shown that a signal-to-quantizing noise power ratio of 40 dB will

be realized by a delta modulation system when the sampling frequency is about

eight times the video bandwidth. This means that a 5-MHz TV picture would

require a sampling frequency of 40 MHz to realize a 40-dB (S/N)q. Therefore,

since (S/N)q is proportional to fr 5 and since the channel bandwidth required is

.

o

H. Inose and W. Yasuba, "A Unity Bit Coding Method by Negative Feedback,"

Proc. IEEE, vol. 51, p. 1527, November 1963.

J.C. Balder and C. Kramer, "Video Transmission by Delta Modulation Using

Tunnel Diodes," Proc. IRE, vol. 50, pp. 428-431, April 1962.
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approximately equal to the sampling frequency, 1 the minimum channelbandwidth

of a delta modulation system is

[(s/1

Eq. J-7 says that, to achieve the 28.8-dB (S/N)q of a 3-digit PCM system, the

channel bandwidth must be at least 24 MHz.

The relative communication range of the PCM and the delta modulation systems

can be determined as follows. As shown in Appendix K (see Eq. K-4}, the threshold

detection range is given by

R* Dr _JP Pt To 1

= 2_t_ 5e _c

(J-8)

where

R* -

l_t _

_t =

D r =

J'O

e=

threshold detection range (In)

transmitter power (W)

Transmitter beamwidth (rad)

diameter of receiver optics (m)

trar_mission of optics

charge of an electron (1.6 x 10 -19 C)

modulation channel bandwidth (Hz)

responsivity of photodetector (A/W)

o As previously mentioned (see footnote on page 187), the ideal channel bandwidth

is only half this value, but since ideal sampling functions and ideal bandpass

characteristics are not realized in an actual system, a realistic value for

channel bandwidth is twice the ideal value.
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To be meaningful, the comparison of the modulation methods must be based

on equivalent system parameters; therefore, we will assume that Dr, p, Pt, To

and c_t are identical for all systems being compared. It follows, therefore, that

the ratio of the maximum range of a delta modulation system to the maximum range

of a PCM system is given by

R_ -_ BcpcmB
R* c Apcm

(J-9)

Now to achieve an (S/N)q of 28.8 dB we found above that the bandwidths required

for the delta modulation and the PCM systems were 24 MHz and 30 MHz, re-

spectively. Substituting these values into Eq. J-9, we find that R*/R*pc m = 1.12.

Thus, for an essentially noise-free received TV picture Li. e., (S/N)q = 28.8 dBJ ,

we can conclude that delta modulation will provide a communication range that is

about 10 per cent greater than can be obtained with PCM.

At this juncture it is important to point out that delta modulation does not offer

improved performance for every application where data is to be coded prior to

transmission. For example, if a TV picture is to be reproduced with an extremely

high (S/N)q, say 50 dB, PCM would provide longer communications range. How-

ever, for the proposed application where an (S/N)q of 30 dB is adequate, delta

modulation does provide superior performance.

C, WIDEBAND FM

Substituting Eq. K-8 into Eq. K-7, we see that the SNR improvement of FM

over double-sideband AM (on a power basis) is

(S)fm (?Cfm_ 2

4\ v/
(J-lO)
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From this relationship it is clear that the SNR improvement afforded by FM is

proportional to the square of the bandwidth expansion. Obviously, wideband FM

has no quantization noise, since it is an analog (rather than digital) form of

modulation. Consequently, the SNR at the output of the receiver decreases with

range, just as in an AM system, until the 9-db threshold input SNR is reached.

However, the SNR of the FM system is higher than that of the AM system by the

wideband gain factor of Eq. J-10. Of course, when the input level drops below the

threshold level, the wideband gain is no longer realized and the SNR at the output

of the receiver drops to an unusable level, just as in the wideband digital system.

The analysis given in the latter part of the next section shows that maximum usable

range of the FM system is obtained when the modulation bandwidth is 30 MHz. That

is, an FM modulation bandwidth of 30 MHz enables an SNR of 28.8 dB to be realized

at the threshold detection level.

D. COMPARISON OF MODULATION METHODS

The relative performance of PCM, delta, wideband FM and AM systems will

now be compared. The AM system has been arbitrarily chosen as the reference

for this comparison. Assuming 100 per cent modulation, the range of the AM sys-

tem, given in Appendix K (see Eq. K-6), is

R
am

!

D [ p Pt Tr o (J-11)

Ut _4e(-_)amBv!

Since there is no modulation gain obtained with AM, the maximum range for a noise-

free picture (i. e., a picture with an SNR _ 28.8 dB) is

Dr _! p PtTo

R° = 27"_8°lt _ 4_'_v
(J-12)
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The signal-to-noise ratio vs range of the AM system, given by Eq. J-ll, is plotted

in Fig. J-2 (and also Fig. 31) with range normalized to R o. Itis seen that the SNR

is inversely proportional to range squared, and that R/R o = i corresponds to the

range at which the SNR is 28.8 dB.

As previously mentioned, for PCM and delta modulation the (S/N)q remains

essentially constant out to the threshold detection range and then drops rapidly to

an unusable value. The threshold detection range for these modulation methods,

given in Appendix K (see K-4), is

Dr _ PPtT°R* = _ 5eBc
(J-13)

Therefore, combining Eqs. J-12 and J-13, we find that the ratio of the maximum

range of the PCM and the delta systems to the maximum range of the AM system is

= 12.4 (J- 14)

R o

Note that B c in the above equation is the modulation bandwidth and, therefore, its

value depends on the type of modulation used. It was previously shown that the

channel bandwidths needed for PCM and delta modulation are 30 MHz and 24 MHz,

respectively. Substituting these values into Eq. J-14 gives R*/R o = 5.05 for I_M

and R*/R o = 5.65 for delta modulation.

The maximum range of the FM system is found as follows. The threshold

detection level of the FM system is 9 dB, just as in the PCM and delta modulation

systems. Therefore, the range improvement factor given by Eq. J-14 is also valid

for the FM system, with B c being the modulation bandwidth of the FM system. Re-

ferring to Eq. J-10, note that the SNR of the FM system is increased over that of

the AM system by (3/4) (Bc/_Bv) 2, the wideband gain factor. Since the SNR of both
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Comparison of modulation methods. R o is the range at

which the SNR of the AM system is 28.8 dB.

the FM and the _lw".,r systems .__ inversely proportional to range squared, and since

(S/N)a m = 28.8 dB at R = Ro, and since it is desired to make (S/N)f m = 28.8 dB

at R = R*o, it follows that

Substituting Eq. J-14 into the above equation and B v

we find that the optimum channel bandwidth is 30 MHz.

into Eq. J-14 gives R*/R o = 5.05 for the FM system.

(J-15)

= 5 MHz, and solving for B e

Substituting Be = 30 MHz
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The results of the foregoing analysis are plotted in Fig. J-2 (and also Fig. 31),

along with the SNR vs range curves of the AM system. It is seen that all the wide-

band modulation methods provide a noise-free picture out to a much greater range

than can be realized with amplitude modulation, that delta modulation provides

about 10 per cent greater range than either PCM or analog FM, and that PCM

and analog FM provide equivalent performance.

One fact previously mentioned is worth emphasizing again at this point.

That is, the relative merit of different wideband modulation methods depends

upon the desired output SNR. If an extremely high SNR is needed, say 50 dB

or higher, then a wideband modulation method such as PCM, which increases

SNR exponentially with bandwidth expansion, is undoubtedly the best choice.

But, ff an SNR of only 30 dB is needed (as in the TV system considered here),

other wideband modulation methods provide equal, or better, performance with

less complex circuitry.
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Appendix K

RANGE OF AN OPTICAL COMMUNICATION SYSTEM

AS A FUNCTION OF MODULATION BANDWIDTH

From Eq. A-14, the ratio of signal power to noise power in the output of a

multiplier phototube optical detector is

2 2
I P PsS s

N I 2 _/p sn 2eB
C + Pb +p--d/

(K-l)

where B is the communication channel bandwidth.
C

Now as discussed in Sec. II. B, for the proposed application, received back-

ground power Pb will be negligible because the receiver will be looking into

space from above (or near the top of) Earth's atmosphere. The dark current Id

will also be negligible because, for the wide bandwidths involved, the shot

noise current caused by received signal power will be much greater (i. e.,

P Ps > > Id)" Therefore, Eq. K-1 can be expressed as

S

N

PP
S

2eB
e

(K-2)

Consider now the power that must be received to realize the threshold

signal-to-noise ratio of 9 dB (or a power ratio of S/N _ 10) as derived in

Appendix D. This received threshold power is (from K-2),

20 eB
C

p * -

s p
(K-3)
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Substituting Eq. K-3 into Eq. B-3 (with T = 1) yields the threshold detection
a

range

a $

=
(K-4)

Now consider the situation where narrowband amplitude modulation is used.

If the received signal is amplitude modulated with modulation index m, the signal-

to-noise ratio at the output of the receiver (after demodulation) is

2
m pP

(s) _ s4eB
roll c

(K-5)

Substituting Eq. K=5 into Eq. K-4 gives

_ r O

Ram _ t 4 e B
C

(K-6)

Now consider the relative performance of a wideband FM system. Black I

has shown that the noise improvement of FM over double sideband AM (on a

power basis) is

fm = 3/_vt 2

alTl

(K-7)

where

fd = peak frequency deviation of FM

B = signal bandwidth
v

1
H. S. Black, "Modulation Theory," D. Van Nostrand Co., New York, 1960.
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Since the bandwidthoccupied by wideband FM is

B _ 2f dC

it is evident that the SNR improvement afforded by wideband FM is approxi-

mately proportional to the square of the bandwidth expansion.

(K-S)

Moreover, since the threshold detection level of an FM receiver is 9 dB,

the same value as in the PCM and delta modulation systems, Eq. K-4 also gives

the threshold detection range of the FM system.
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Appendix L

CHARACTERISTICS OF ELECTRO-OPTIC CRYSTALS

A. THEORY

The birefringence of a crystal can be expressed in terms of its index ellipsoid,

which, in a cartesian coordinate system, is given as

2 2 2
x +y +z

2 2 2
n fl n

x y z

1 (L-l)

in Eq. L-l, nx, ny, and nz are the three principal indices of refraction of the opti-

ca/axes. When no electrical stress is present, the optical axes coincide with the

crystallographic axes. In crystals of the cubic class, such as hexamine and cu-

prous chloride, Eq. L-1 reduces to that of a sphere; that is,

2 2 2
x + _7 + Z = 1

2
n

n = rl =n = n
x y z

(L-2)

This is because crystals of this class are isotropic without an applied field.

If an electrical field is applied to the crystal, the index ellipsoid is deformed

and its equation in the original coordinate system is

2 2 2
x +y +z

2 + 2r (.Exyz + EyZX + EzXy) = 1 (L-3)
n

In Eq. L-3, r is the electro-optical coefficient of the crystal and Ex, Ey, and E z

are the components of the electric field along the crystallographic axes. These

axes, however, no longer coincide with the optical axes.
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In order to determine the new optical axes and the new indices of refraction,

it is necessary to rotate the original coordinate axes so that they coincide with the

principal axes of the deformed index ellipsoid as given in Eq. L-3. In other words,

,) coordinate system, the index ellipsoid must be put into normalin the new (x ty, z

form; that is,

wheren ,,n , andn
x y z

xl2 y,2 z,2

-- +--+ --= 1
2 2 2

nx, ny_ nz,

(L-4)

, are the three principal indices of refraction when the elec-

tric field is applied to the crystal. The transformation that puts the index ellipsoid

into normal form is the rotation matrix given by

(:)(:x al fll 5'1

= °_2 f12 Y2 Y'

3 f13 Y3 z'

(L-5)

where al ' E1 ' y1 , .... are the direction cosines relating the two coordinate

systems. The indices of refraction, n x, , ny, , n z , , are obtained from the

roots of ¢ of the secular equation

1
_- ¢ rE rE
2 z y

n

1
rE _- _ rE

z 2 x
I1

1
rE rE ---

y x 2
n

= 0 (L-6)

and are related as follows: ¢1 = (1/nxt)2, ¢2 = (1/ny t)2 and ¢3 = (1/nz')2'
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There are nine other equations available for determining the direction cosines.

That is, there are three sets of equations such as Eq. L-7, one for each root of ¢.

(-_ ¢)X + rE Y + rE Z 0z y

rEzX +('-_ - _)Y + rExZ = 0 (L-7)

rEyX + rExY +(7- _)Z = 0

Each root of ¢ used in Eq. L-7 determines one of the three sets of direction

cosines, (0_1(_2q3) , (_]lf12_), or(TiT2_3). Here X corresponds to ql' Y to

_2' and Z to _3' when ¢1 is used. When ¢2 is used, X corresponds to _1' Y to

f32, etc. When a root of ¢ is applied in Eq. L-7, it is not known immediately

which of the sets ((_, f_ or _ ) has been obtained. This information is obtained by

trial and error by putting the sets in the transformation of Eq. L-5 and making sure

that the rotated system is a right-handed coordinate system.

When applying an electric field to a crystal with cubic symmetry, three cases

are of practical interest: the field perpendicular to the (001) plane, to the (110)

plane, or to the (111) plane. These three cases arise because it has been found

that crystals of the cubic class can be cut and polished along these planes without

too much difficulty. Calculations for the field perpendicular to these three planes

have been made and some of the results are given in Table L-1. The results given

are the indices of refraction along the new optical axes, and the phase differences

when the light is propagated along each of the new optical axes. In this situation

the polarized light has components along each of the two remaining optical axes.

The phase difference is defined as r = (27r / ), ) _ (n s - nf), where k is the wave-

length of the light, _ is the length of the birefringent material, n is the index of
s

refraction of the slower, and nf is the index of refraction of the faster axis under

consideration.
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TABLE L-1. INDICES OF REFRACTION AND PHASE DIFFERENCES

Indexof Refraction

n
x t

ny,

n !

Z

Phase Difference with

Propagation Along the...

x i axis

y' axis

z ' axis

E 1 (001)

plane

n +ln3rE

n

__L_ n3rV
kd

_-_ n3rV

2.._ n3 rV
k

E I (110)

plane

1
• n +-_ n3r E

1
n -_n3rE

n

__L n3rV
kd

___L n3rV
kd

27r L n3rV
kd

E i (111)

plane

1 n3n+_ rE

1
n +_n3rE

1 n3n-_ rE

The phase differences were obtained using E = V/d, where V is the voltage

across a thickness d of the crystal, and L is the length of the crystal along the

light path. It is seen from Table L-1 that the largest phase difference is obtained

when the electric field is perpendicular to the (110) plane and the light is directed

along the z' axis. This phase difference is given by r = (2 _r/k) (L/d) (n 3 r V), which

can be made large if the length along the light path t is made large and the dimen-

sion d across which the voltage is applied is made small. Since the electric field

and the light path are perpendicular, this is known as transverse modulation.

Table L-1 also shows that when the electric field is perpendicular to the (001) plane

and the light is propagated along the z' axis, the dimensions 4/d do not appear.
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This is becausethe field is also along the z_axis, so that _ and d are the same

dimension. Sincethe field andthe light path are in the same direction, this is

known as longitudinal modulation.

B. REVIEW OF BIREFRINGENCE

A birefringent material is illustrated in Fig.

SLOW
I
I

FAST

L-1. This figure also illustrates

the case of a cubic crystal with an electric

field applied to it. Here the fast and slow

axes would be two of the new optical axes

in the primed coordinate system. As il-

lustrated in Fig. L-l, the incident light

has an amplitude A, and is polarized with

its plane of polarization at an angle e with

respect to the fast axis. The components

of the light along fast and slow axes are

given by F=AcoseandS=Asine.

The phase difference between the two

components is given by

Fig. L-1. Illustration of

birefringence.

F- 217X&(ns - nf) (L-8)

If the birefringent material is between crossed polarizers, the situation exists

as shown in Fig. L-2. The four diagrams of the figure represent end-on views of

the light (looking against it) at four different points going through the system. Pl

is the axis of the polarizer. In Fig. L-2(a) the polarized light is shown as it

arrives at the surface of the birefringent material with an amplitude A and making

an angle O with the fast axis. This amplitude is broken up into two components

[Fig. L-2(b)], F = A cos 0 along the fast axis, and S = A sin O along the slow axis.

The component along the fast axis travels faster in the material, and upon emerg-

ing will be advanced in phase relative to the component traveling along the slow axis.
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Fig. L-2. Birefringent material between crossed polarizers.

In Fig. L-2(c) these two components are shown as they arrive at the analyzer,

whose axis is indicated as P2" The analyzer transmits only vibrations parallel

to P2" In other words, only the components St and F / get through, and they are

vibrating in the same plane. These components have magnitudes

S' = scose = Asine cose I
(L-9)

F / = Fsine = Acose sine

This result shows that regardless of the angle 0, both components St and F / trans-

mitted by the analyzer are equal in magnitude when the polarizers are crossed.

This result also shows that the mm_mu_m amount of light is transmitted by the

analyzer when e = 45 °, since sin e cos e has a maximum value when 0 = 45 °.

For this reason, modulation experiments are usually performed with the plane

of polarization of the light at an angle of 45 ° with respect to the optical axes of

the birefringent material.

The intensity of the light passing through the analyzer is given by

R 2 = S '2 + F t2 + 2S/F _ cos ( F+?r}, (L-IO)
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where r is the phase difference given by Eq. L-8 and rr is added since St and

F t of the incident light beam are oppositely directed. 1 Inserting Eq. L-9 into

Eq. L-10, and after some manipulation, the following is obtained.

R2 = 4A2 sin2 0 cos 2 0 sin 2 F
2

For the case of maximum transmission (0 = 45 °) this reduces to

R 2 = A 2 sin 2 F
2

Since R 2 is the transmitted intensity and A 2 is the incident intensity, the previous

equation can be written

.2 F
I = I sm -- (L-11)o 2

When an electro-optic modulator is used, the phase difference, as shown in

Table L-l, is controlled by the applied voltage. Eq. L-11 for this case can be

written

.2CV
I = I sm -- (L-12)

o 2

where C is the coefficient of V as given in Table L-1. If the modulating signal

is a sine wave, Eq. L-12 becomes

iiosm2(cvsint)2 (L-13)

where u_ is the angular frequency of the applied voltage. It is seen from Eq. L-13

that the angular frequency of the transmitted intensity has twice the rate of that

of the applied voltage. This occurs because I reaches a maximum value when sin

0¢t = 1, and also when sin u_t = -1; that is, I has a maximum value twice for every

1Eq. L-10 was obtained from Jenkins and White, Fundamentals of Optics,

McGraw-Hill Book Company, Inc., New York, 1950, p. 207.
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cycle of applied voltage. In order to eliminate this "double frequency" effect, the

electro-optic modulator must be biased either electrically or optically. The latter

is the easier of the two and canbe accomplishedby placing a quarter-wave plate,

properly oriented to obtain circularly polarized light, between the polarizer and

the birefringent electro-optic modulator. In Fig. L-2, this corresponds to having

the F componentninety degrees aheadof the Scomponentas the light is incident

on the modulator. For this case the intensity can be expressed as

sin2 (L- 14)
I= Io 2

From this equation it is seenthat unless the voltage is very high the argument

never goes negative and, therefore, the frequency of the transmitted intensity is

the same as that of the applied voltage.

Although application of the electric field perpendicular to the (110)plane yields

the highest per cent modulation, it is usually more convenient to grow the crystal

such that the electric field canbe applied perpendicular to the (111)plane. As

shownin Table L-l, if the crystal is grown such that the field must be applied per-

pendicularly to the (110)plane, then the light must propagate only along the z_axis;

otherwise the per cent modulation will be reduced significantly. On the other hand,

if the crystal is grown such that the field canbe applied perpendicularly to the (111)

axis, the light canpropagate alongeither the xt axis or the y_ axis with equally

goodresults. Thus, the reduction of the per cent modulation by the factor

is worth the convenienceof not having to orient the crystal accurately.

Substituting the C factor corresponding to applying the electric field perpen-

dicular to the (111) plane (see Table L-l) into Eq. L-14 gives

sin 2 y r n _ Vsin0_t + (L-15)
I = Io 2kd
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Eq. L-15 shows that the peak-to-peak modulation voltage needed to achieve 100

per cent modulation is

Xd

VX/2 = r_ n 3 (L-16)r4

This voltage is known as the half-wave voltage because it results in a 180 ° shift of

the plane of polarization. Substituting Eq. L-16 into Eq. L-15 yields

_o _(__wm_t_,__)
In accordance with Eq. L-17, the per cent modulation is given by

(L-17)

AI

m = Io,.2/ (I00)

-2-I 2 ( yVsin_t +4)/2 I
o I sin o

I - o 2vx - T
I I

0 0

2 2

(I00)

-I],00

[ I( 1-I]2 " -_ 1- cos 2Vx/2

sin (,r Vs_.cot_ 100vx/2 )]

100

(IriS)

210



Appendix M

OPTIMUM ELECTRO-OPTIC CRYSTAL LENGTH

Assuming a sinusoidal drive signal is applied to the electro-optic crystal, the

output power of the transmitter is given by

where

Po = Pt [l+mcos a_mt]
(M-l)

m = modulation factor

a_ = modulation frequency
m

Pt = average output power from transmitter

The received power, being directly proportional to the transmitted power, can be

expressed as

Ps = Pt [l+mcos a_mt ] (M-2)

where P is the average received signal power.
S

°'-"_ _ output current of a photodetector is directly proportional to the re-

ceived power (i. e. to the radiation incident oil u,_, _,........... ), the DC detector
current is

and the signal current is

i = PmPsCOS u_ t (M-4)s m
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where

Pb = received background power

I d = dark current

p = responsivity of the photodetector

It follows that the detected signal power is

S = i: R_

and the shot noise power is

(M-5)

(M-6)

where

-19
e = charge on an electron (1.6 x 10 coulomb)

B = bandwidth (Hz)

R = load resistance (ohms)

Thus, the signal-to-noise ratio is

S = (pro Ps) 2

N 4 eB p (Ps + Pb + Id/P) (M-7)

For the case where the shot noise caused by signal power is negligible com-

pared to that caused by dark current plus background power [i. e., where

(Pb + Id/P) > > Psi ' the signal-to-noise ratio is given by

= P(mPs )2

N Id/P) (M-8)
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Eq. M-8 shows that the optimum crystal length is that length which maximizes the
factor (mPs)2.

For the usual case where the voltage applied to the crystal is not sufficient
for 100 per cent modulation, the per centmodulation is directly proportional to
the length of the crystal:

m_L (M-9)

Due to the transmission loss of the crystal, the transmitter output power is
given by

L

Pt = P1 y (M-IO)

where

Pl = laser output power

7 = transmission/unit length of crystal

L = length of crystal

Since the received power is directly proportional to the transmitted power,

L

P_ P1 7S

Combining (M-9) and (M-11) we get

(M-11)

/1%$ 1 9%

The optimum crystal length can now be determined by setting the derivative of

this value equal to zero:

d (raPs)2
= 0

dL

2KL 2 2L (ln_+ L) = 0

1

L opt - ln7

(M-13)
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Eq. M-13 shows that the optimum length is inversely proportional to the natural

log of the crystal transmission. For example, if the transmission is 0. 2/cm, the
optimum length is 0.62 cm.

For the situation where the shot noise created by background power and dark

current is negligible [i. e., where Ps > > (Pb +Id/p) ]' Eq. M-7 reduces to

2

S pm Ps

N 4 eB (M-14)

In this case it is the factor m2Ps, rather than (mPs)2 , which must be maximized.

Combining (M-9) and (M-11) we get

2 L
m P =L27 (M-15)

S

Differentiating Eq. M-15 with respect to L and setting the derivative equal to zero
yields

2
L -

opt ln_

The optimum lengths predicted by Eqs. M-13 and M-15 are plotted in Fig. M-1.

From the foregoing results we conclude that there is an optimum crystal

length and that the optimum length is dependent upon the transmission per unit

length of the crystal and relative magnitudes of Ps and (Pb + Id/P)"

8

7

6 (% + I_/p)>> Ps

-- fl

3

I

o _"l I I I I I ] I I
o o., o.2 o3 0.4 o.5 o.6 o.7 08 o.9

TRANSMISSION/CM

Fig. M-1.

l
I0

Optimum electro-optic crystal length vs crystal transmission.
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RELATIONSHIP

Appendix N

BETWEEN SNR AND MODULATION BANDWIDTH

The power output of the laser transmitter is

= Pt [' +r,,(,)]
where

Pt = average power output of laser

m = modulation factor

The modulation factor is given by

where

V =
m

vx/2

_Vm(t)

re(t) = VX/2

drive voltage across electro-optic crystal

half-wave voltage of electro-optic crystal

(N-l)

(N-2)

Consider the situation where it is difficult to achieve a drive voltage sufficient

for 100 per cent modulation.

to the crystal drive voltage:

For this case the modulation factor is proportional

re(t)_ V(t) (N-3)

Photodetectors, being true square-law devices, generate an output current

which is directly proportional to the power incident on their photosensitive sur-

faces. Hence, the peak AC output current is proportional to received signal

power and therefore is also proportional to the transmitted power:

i _mP
S O (N-4)
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It follows that the signal power, being proportional to signal current squared,

is
2

S _m
C (N-5)

The noise power at the output of the detector is

where

N = Bc (N-6)

B = modulation bandwidth
m

7"/o - noise power density

Thus, the ratio of signal power to noise power is

2 2
S m P
C 0

OC

N B 1_oC In

It is well known, that the SNR at the output of an FM receiver is related to

Sc/Nc, the SNR at the input to the FM demodulator, by

S Sc
_= 3_ 2

where

Af

f
in

= deviation ratio
^ Af

f
m

= peak carrier deviation

= modulation frequency

(N-7)

(N-8)

For wideband FM the modulation bandwidth is

B _2 Af
In

(N-9)
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4

Combining Eqs. N-7, N-8 and N-9, we can express the SNR as

2

N \2fro/ B m
(N-IO)

For the case we are considering, where the drive voltage is not sufficient for

100 per cent amplitude modulation, the per cent modulation is inversely pro-

portional to modulation bandwidth B (i. e., the drive voltage-bandwidth product
m

is a constant). Therefore, Eq. N-10 can be expressed as

2

N B 2 f

(N-f1)

which indicates that the SN-R is independent of modulation bandwidth. Thus we

conclude that no advantage will be gained by trading bandwidth for drive voltage

unless 100 per cent amplitude modulation can be realized.
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